1.	Disprove	each of	the	following	with	\mathbf{a}	counterexample.
----	----------	---------	-----	-----------	------	--------------	-----------------

(a) \mathbb{Z} is dense in \mathbb{R} .	*					
(b) \mathbb{R}^+ is dense in \mathbb{R} .	*					
2. Prove that $\mathbb{R} - \mathbb{Z}$ is dense in \mathbb{R} .	**					
3. Prove that $\mathbb{Q} - \mathbb{Z}$ is dense in \mathbb{R} .	**					
4. Using only the AP give a direct ϵ -N proof that $\lim_{n \to \infty} \frac{3}{2n+1} = 0$.	*					
5. Using only the AP give a direct ϵ -N verification that $\left\{\frac{2}{n^2} + \frac{1}{n} + 3\right\}$ converges to 3.	**					
6. By contradiction (as in class) and the ϵ -N definition show that $\left\{\frac{n}{n+1}\right\}$ does not converge to 2) **					
7. Suppose that $\{a_n\}$ converges to $a < 0$. Show $\exists N \text{ st } n \ge N \rightarrow a_n < 0$.	*					
8. Define $a_1 = 1$ and for $n \ge 1$ define						
$a_{n+1} = \begin{cases} a_n + \frac{1}{n} & \text{if } a_n^2 \le 2\\ a_n - \frac{1}{n} & \text{if } a_n^2 > 2 \end{cases}$						
(a) Write the first five terms of this sequence.	*					
(b) Show that $\forall n, a_n - \sqrt{2} < \frac{2}{n}$.	**					
(c) Use this property to show the sequence converges to $\sqrt{2}$.	*					

9. For the sequence $\{a_n\}$ defined in book Example 2.3 show that $\forall x \in \mathbb{Q} \cap (0, 1]$ there are infinitely ** many indices n such that $a_n = x$. Clarify what this is saying with a specific example.