**

**

- 1. By appealing only to the definition of convergence show that if $\{a_n\}$ converges to a and $\{b_n\}$ ** converges to b and if $\alpha \in \mathbb{R}$ then $\{\alpha a_n + b_n\}$ converges to $\alpha a + b$.
- 2. Show that $\mathbb{R} \mathbb{Q}$ is dense by showing that every $x \in \mathbb{R}$ is the limit of a sequence of irrational ** numbers.
- 3. Prove that the set $[2,5] \cup \{7\}$ is closed.
- 4. Justify whether each of the following sequences is monotone.

(a)
$$\left\{ n + \frac{(-1)^n}{n} \right\}$$

(b) $\left\{ \frac{1}{n^2} + \frac{(-1)^n}{3^n} \right\}$
*

- 5. Define $\{a_n\}$ recursively by $a_1 = \sqrt{2}$ and $a_{n+1} = (\sqrt{2})^{a_n}$. Prove that $\{a_n\}$ converges.
- 6. Suppose that $\{a_n\}$ is monotone. Prove that $\{a_n\}$ converges iff $\{a_n^2\}$ converges. Show that this ** result does not hold without the monotonicity assumption.
- 7. Use book problem 5 and the Comparison Lemma to obtain another proof (not the book's) * that if |c| < 1 then $\lim_{n \to \infty} c^n = 0$.
- 8. Use book problem 5 and the Comparison Lemma to prove that $\lim_{n \to \infty} \sqrt{n}c^n = 0.$ **