- 1. Suppose $f : \mathbb{R} \to \mathbb{R}$ is continuous and $\forall x \in \mathbb{Q}, f(x) = 0$.
 - (a) Prove that $\forall x \in \mathbb{R}, f(x) = 0$.
 - (b) What is important about \mathbb{Q} here? State (do not prove) a generalization of the result based upon this important fact.
- 2. Let $a, b \in \mathbb{R}$ with a < b. Find a continuous function $f : (a, b) \to \mathbb{R}$ having an image that is "unbounded above. Also find another continuous function $g : (a, b) \to \mathbb{R}$ having an image that is bounded above but does not attain a maximum value. Give the function rule and draw the graph for each. You do not need to prove the relevant facts about the functions.
- 3. Suppose that the function $f : [0,1] \to \mathbb{R}$ is continuous, f(0) > 0 and f(1) = 0. Prove ** $\exists x_0 \in (0,1]$ such that $f(x_0) = 0$ and f(x) > 0 for $0 \le x < x_0$. In other words there's a smallest $x_0 \in (0,1]$ where $f(x_0) = 0$.
- 4. Prove that there is a solution to the equation

$$\frac{1}{\sqrt{x+x^2}} + x^2 - 2x = 0 \text{ with } x > 0$$

5. Suppose that $f : \mathbb{R} \to \mathbb{R}$ is continuous and that $f(\mathbb{R})$ is bounded. Prove that there is a solution ** to the equation f(x) = x with $x \in \mathbb{R}$.

*