1. For each of the following statements, determine if true or false. If false provide a counterexample. True statements need no justification.

(a) Every continuous function $f : \mathbb{R} \to \mathbb{R}$ is uniformly continuous.	*
(b) Every continuous function $f: [0,1) \to \mathbb{R}$ is uniformly continuous.	*
(c) Every continuous function $f: [0,1] \to \mathbb{R}$ is uniformly continuous.	*
(d) Every uniformly continuous function $f: D \to \mathbb{R}$ is continuous.	*
2. Prove that $f : \mathbb{R} \to \mathbb{R}$ given by $f(x) = x^3$ is not uniformly continuous.	*
3. Prove from the definition that $f: [1,5] \to \mathbb{R}$ given by $f(x) = \frac{2}{x+3}$ is uniformly continuous. Don't use the theorem from class!	**
4. Suppose that $f:(a,b) \to \mathbb{R}$ is uniformly continuous. prove that f is bounded.	**
5. Define $f(x) = \sqrt{x}$ for $x \ge 0$. Verify the ϵ - δ criterion for continuity at $x = 4$.	**
6. Define	*
$f(x) = \begin{cases} x+1 & \text{if } x \le \frac{3}{4} \\ 2 & \text{if } x > \frac{3}{4} \end{cases}$	
Use the ϵ - δ criterion to show that f is not continuous at $x = \frac{3}{4}$.	
7. Define $f : \mathbb{R} \to \mathbb{R}$ by $f(x) = \frac{1}{x^2 + 1}$. Prove that h satisfies the $\epsilon - \delta$ criterion on \mathbb{R} .	**