1. Prove that the function $f:(1,\infty)\to\mathbb{R}$ given by $f(x)=\frac{x}{1-x}$ is strictly monotone.	*
2. Is the converse of Theorem 3.23 true or false? Justify.	*
3. Let $D = [0,1] \cup [2,3]$ and define $f: D \to \mathbb{R}$ by	*
$f(x) = \begin{cases} x & \text{if } 0 \le x \le 1\\ x^2 - 3 & \text{if } 2 \le x \le 3 \end{cases}$	
(a) Prove that f is continuous using Theorem 3.23.	**
(b) Prove that f is continuous using the definition of continuity.	**
4. Define $f: [1,4] \to \mathbb{R}$ by $f(x) = \begin{cases} 2x+1 & \text{if } 1 \le x \le 3 \\ x^2 & \text{if } 3 < x \le 4 \end{cases}$	
(a) Find $f([1,4])$.	*
(b) Find a formula for $f^{-1}: f([1,4]) \to [1,4].$	**
(c) Prove that f^{-1} is continuous.	*
5. Find $\lim_{x \to 2} \frac{x-2}{x^4-16}$.	*
6. Prove that \mathbb{N} has no limit points.	**