*

**

**

- 1. Ascertain that $f(x) = (x 2)^5$ satisfies $f(x_0) = f'(x_0) = \dots = f^{(n-1)}(x_0)$ with $x_0 = 2$ and * n = 3. Then find all possible z satisfied by Theorem 4.24.
- 2. Suppose $f: (0,4) \to \mathbb{R}$ has f(2) = 7, f'(2) = 0, f''(2) = 0 and $f'''(x) > \frac{1}{2}$ for $x \in (0,4)$. Find ** a lower bound on f(3.9) and then explain why there is no upper bound.
- 3. Define $f: [0,1] \to \mathbb{R}$ by f(x) = x.
 - (a) Prove that for any partition P of [0,1] we have $U(f,P) > \frac{1}{2}$.
 - (b) Prove that for each ϵ there is a partition P_{ϵ} of [0,1] such that $U(f,P_{\epsilon}) \leq \frac{1}{2} + \epsilon$.
 - (c) What can you conclude about $\overline{\int}_{a}^{b} f$ from (a) and (b)? Explain.
- 4. Suppose that $f:[a,b] \to \mathbb{R}$ is bounded and has $f(x) \ge 0$ for $x \in [a,b]$. Prove that $\overline{\int}_{a}^{b} f \ge 0$.
- 5. Give an example of a continuous and bounded function $f : [0,2] \to \mathbb{R}$ and a sequence of * partitions $\{P_n\}$ such that each P_n is composed of n subintervals, $\lim_{n \to \infty} L(f, P_n)$ exists but does not equal the area under f. Choose your f so the area is geometrically obvious.
- 6. Define $f:[0,1] \to \mathbb{R}$ by

$$f(x) = \begin{cases} x & \text{if } x \text{ is rational} \\ 0 & \text{if } x \text{ is irrational} \end{cases}$$

Prove that $\underline{\int}_{a}^{b} f = 0$ and $\overline{\int}_{a}^{b} f \ge \frac{1}{2}$.

- 7. Use the Archimedes-Riemann Theorem to show that $\int_a^b x^2 dx = \frac{b^3 a^3}{3}$.
- 8. Define $f: [0,3] \to \mathbb{R}$ by

$$f(x) = \begin{cases} 1 & \text{if } x \in [0,2) \\ x-1 & \text{if } x \in [2,3] \end{cases}$$

Prove that f is integrable.