Theorem:

If a complete binary tree has n nodes then in the worst-case it is ©(n) to convert it to a max heap.
Proof:

Converting to a max heap means we run maxheapify on the nodes with children. Those are the
nodes with indices |n/2], |[n—1] —1, ..., 2, 1. In the worst-case every node with children is swapped
all the way to the leaf layer. We know that if the tree has n nodes then the maximum level (0-
indexed) has index |lgn| but not all the leaves are necessarily at this level. However certainly the
number of swaps required in total:

(a) Will be less than or equal to the number of swaps required in total if every node with children
is swapped to level |lgn].

(b) Will be greater than or equal to the number of swaps required in total if every node with children
is swapped to level |lgn]| — 1.

So let’s look at these separately.

(a) Suppose every node with children is swapped to level |lgn|. Here is a table showing how many
nodes undergo how many swaps:

’ Level \ # Nodes \ # Swaps/Node \ # Swaps ‘
0 1 lgn] 1(|lgn])
1 2 lgn| —1 2(|lgn] —1)
2 4 lgn] —2 4(|lgn] —2)
k ok lgn) — k 2% (|lgn| — k)
ngn.J -1 2ngﬁj—1 1 QUg"J‘_l(l)
llgn] 2llen] 0 0

Since each swap takes constant time, say 1 second, then the total time equals the total number
of swaps and this is then at most the sum of the rightmost column: The total number of swaps
then satisfies:

llgn|—1
Tn)< Y, 2%llgn) —k)
k=0
llgn|—1 llgn|—1

< |lgn] Z 2k Z K2k
k=0 k=0

Thus T'(n) = O(n).

(b) Suppose every node with children is swapped to level |lgn| — 1. Here is a table showing how
many nodes undergo how many swaps:

] Level \ # Nodes \ # Swaps/Node \ # Swaps

0 1 llgn| —1 1(|lgn] —1)

1 2 llgn] —2 2(|lgn] —2)

2 4 llgn] —3 4(|lgn| —3)

k ok lgn| — (k+1) 2 ([lgn) — (k+1))
lgn| —2 plign] -2 1 align]-2(1)
llgn| —1 2llen]—1 0 0

llgn 2llgn] 0 0

Since each swap takes constant time, say 1 second, then the total time equals the total number
of swaps and this is then at most the sum of the rightmost column: The total number of swaps
then satisfies:

llgn|—2
T(n)> Y 2(llgn) - (k+1))
k=0
llgn|—2 llgn|—
(lgn]—1) Y 28— Z k2’“
k=0

> ([lgn] — 1) (271 - 1) ~ ((Dgn) —)21 1 2)
lgn)2Ueml=t _|1gpn| —2lenl=1 41 _ |Ign|2len]—1 4 3. ollen]—-1 _9
> |lgn| g g

>2.2Uenl=l _jgp| —1

> 2lsm) — |lgn| —1

>lm=1 _jgp 1

—_

>-n—(1+1gn)

vV
NG V)

for large enough n

3

Thus T'(n) = Q(n).

Together we then have T'(n) = O(n).

