Theorem:

If a complete binary tree has n nodes then in the worst-case it is ©(n) to convert it to a max heap.
Proof:

Converting to a max heap means we run maxheapify on the nodes with children. Those are the
nodes with indices |n/2], |[n—1] —1, ..., 2, 1. In the worst-case every node with children is swapped
all the way to the leaf layer. We know that if the tree has n nodes then the maximum level (0-
indexed) has index |lgn| but not all the leaves are necessarily at this level. However certainly the
number of swaps required in total:

(a) Will be less than or equal to the number of swaps required in total if every node with children
is swapped to level |lgn].

(b) Will be greater than or equal to the number of swaps required in total if every node with children
is swapped to level |lgn]| — 1.

So let’s look at these separately.

(a) Suppose every node with children is swapped to level |lgn|. Here is a table showing how many
nodes undergo how many swaps:

’ Level \ # Nodes \ # Swaps/Node \ # Swaps ‘
0 1 lgn] 1(|lgn])
1 2 lgn| —1 2(|lgn] —1)
2 4 lgn] —2 4(|lgn] —2)
k ok lgn) — k 2% (|lgn| — k)
ngn.J -1 2ngﬁj—1 1 QUg"J‘_l(l)
llgn] 2llen] 0 0

Since each swap takes constant time, say 1 second, then the total time equals the total number
of swaps and this is then at most the sum of the rightmost column: The total number of swaps
then satisfies:
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Thus T'(n) = O(n).



(b) Suppose every node with children is swapped to level |lgn| — 1. Here is a table showing how
many nodes undergo how many swaps:

] Level \ # Nodes \ # Swaps/Node \ # Swaps

0 1 llgn| —1 1(|lgn] —1)

1 2 llgn] —2 2(|lgn] —2)

2 4 llgn] —3 4(|lgn| —3)

k ok lgn| — (k+1) 2 ([lgn) — (k+1))
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llgn 2llgn] 0 0

Since each swap takes constant time, say 1 second, then the total time equals the total number
of swaps and this is then at most the sum of the rightmost column: The total number of swaps
then satisfies:
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Thus T'(n) = Q(n).

Together we then have T'(n) = O(n).



