
CMSC 420: Laplacian Matrices, Graph

Clustering, Spanning Trees

Justin Wyss-Gallifent

November 17, 2024

1 Introduction . 2
2 Math Part 1 . 2

2.1 The Laplacian Matrix . 2
2.2 The Determinant of a Matrix 3

3 Kirchoff’s Theorem for Spanning Trees 4
4 Math Part 2 . 5

4.1 Matrix and Vector Multiplication 5
4.2 Eigenvectors and Eigenvalues - Definitions 5
4.3 Eigenvectors and Eigenvalues - Finding 6

5 Graph Partitioning . 7
5.1 The Fiedler Vector and Value 7
5.2 Graph Partitioning . 8

6 Notes . 9

1

1 Introduction

The goal of this section is to discuss the Laplacian matrix of a graph as a data
structure and how it can be used to answer two problems:

• If a graph can be divided into two subgraphs each of which is a strongly-
connected cluster and such that the two clusters are weakly connected
with one another, how can we partition them algorithmically?

• How many spanning trees does a graph have?

2 Math Part 1

2.1 The Laplacian Matrix

Adjacency matrices are commonly used to store simple graphs. For a graph
with n vertices we construct an n× n matrix A where:

A[i, j] =

{
1 if vertices i and j are connected by an edge.

0 if vertices i and j are not connected by an edge.

Example 2.1. The graph above has adjacency matrix:

A =



0 0 1 0 0 1 0
0 0 1 1 1 0 0
1 1 0 0 0 1 0
0 1 0 0 0 0 1
0 1 0 0 0 0 1
1 0 1 0 0 0 0
0 0 0 1 1 0 0


Note 2.1.1. Observe that we are 0-indexing the rows and columns here, as is
typical in CS.

There are two other matrices that arise frequently.

Definition 2.1.1. The degree matrix D has A[i, i] equal to the degree of the
vertex i and 0 elsewhere.

Definition 2.1.2. The Laplacian matrix is defined by L = D −A.

2

Example 2.2. Thus for the graph given in the introduction we have:

D =



2 0 0 0 0 0 0
0 3 0 0 0 0 0
0 0 3 0 0 0 0
0 0 0 2 0 0 0
0 0 0 0 2 0 0
0 0 0 0 0 2 0
0 0 0 0 0 0 2



L = D −A =



2 0 −1 0 0 −1 0
0 3 −1 −1 −1 0 0
−1 −1 3 0 0 −1 0

0 −1 0 2 0 0 −1
0 −1 0 0 2 0 −1
−1 0 −1 0 0 2 0

0 0 0 −1 −1 0 2



Observe that the Laplacian matrix is sufficient enough to describe the graph
completely. The adjacency matrix is, too, but the Laplacian matrix turns out
to be more useful.

2.2 The Determinant of a Matrix

Given an n×n matrix the single most important value associated to this matrix
is its determinant.

There are many ways to define the determinant but we’ll do it recursively in a
very computational way.

Definition 2.2.1. For a 1 × 1 matrix A (containing a single value) we define
the determinant det(A) to be equal to that value.

Example 2.3. If we have A = [3] then det(A) = 3.

Definition 2.2.2. For an n×n matrix with n > 1 we recursively define det(A)
as follows:

If the top row of A consists of the entries a11, a12, ... , a1n then we define:

det(A) = +a11 det(A11)− a12 det(A12) + a13 det(A14)− ...

Here the matrix Aij is the matrix minor which is the matrix A with row i and
column j removed.

3

Example 2.4. We have:

det

([
3 5
2 7

])
= +3 det([7])− 5 det([2]) = 3(7)− 5(2) = 21− 10 = 11

Observe that in general:

det

([
a b
c d

])
= ad− bc

Example 2.5. We have:

det

3 5 0
2 7 1
0 4 6

 = +3 det

([
7 1
4 6

])
− 5 det

([
2 1
0 6

])
+ 0 det

([
2 7
0 4

])
= 3(38)− 5(12) + 0(8)

= 54

3 Kirchoff’s Theorem for Spanning Trees

We have the following theorem for counting the number of spanning trees for a
graph:

Theorem 3.0.1. Suppose a graph has Laplacian matrix L. Then the number
of spanning trees for the graph equals |det(Lij)| for any i, j.

Proof. Omit for now. QED

Example 3.1. Consider the graph:

0

1

2

3

This graph has Laplacian: 
3 −1 −1 −1
−1 2 −1 0
−1 −1 2 0
−1 0 0 1


Observe that, for example:

4

|det(L11)| = ... = |3| = 3

And just to try a different minor:

|det(L12)| = ... = | − 3| = 3

This tells us that there are three spanning trees. And in fact here they are:

0

1

2

3

0

1

2

3

0

1

2

3

4 Math Part 2

4.1 Matrix and Vector Multiplication

Given an n × n matrix A and a vector with n entries (an n × 1 matrix) v̄ we
can perform the multiplication Av̄ to form a new vector with n entries.

We do this by multiplying each of the ith entries in ~v by the ith column in A
and adding.

Example 4.1. For example: 1 2 3
0 4 1
5 7 6

 10
15
30

 = 10

 1
0
5

+ 15

 2
4
7

+ 30

 3
1
6

 =

 130
90

335


4.2 Eigenvectors and Eigenvalues - Definitions

Given an n× n matrix A there are some very special vectors associated to A.

Definition 4.2.1. A vector v̄ is an eigenvector for A if A~v = λ~v for some
constant λ. The constant λ is called an eigenvalue.

Example 4.2. Let’s define:

A =

[
−5 2
−7 4

]
and v̄ =

[
2
7

]

5

Observe that:

Av̄ =

[
−5 2
−7 4

] [
2
7

]
=

[
4

14

]
= 2

[
2
7

]
= 2v̄

Thus we can say that this v̄ is an eigenvector with eigenvalue λ = 2.

4.3 Eigenvectors and Eigenvalues - Finding

Finding eigenvalues and eigenvectors is not overly difficult in theory but the
associated calculations can be lengthy and approximations are often necessary.

Because of this nobody finds them by hand except for demonstration of the
procedure. Luckly both eigenvectors and eigenvalues can be found easily with
software, for example in Python the numpy package can do it.

However here is how we find them. The eigenvalues turn out to be the roots of
the characteristic polynomial of the matrix. The characteristic polynomial of
the matrix may be found as follows:

1. Negate the matrix.

2. Add x to every entry on the diagonal.

3. Take the determinant.

Example 4.3. Consider the matrix:[
2 −3
−1 4

]
We negate and add x to every entry on the diagonal:[

x− 2 3
1 x− 4

]
The characteristic polynomial is then the determinant:

(x− 2)(x− 4)− (3)(1) = x2 − 6x+ 8− 3 = x2 − 6x+ 5 = (x− 5)(x− 1)

Thus the eigenvalues are 5 and 1.

To find the eigenvectors for a particular eigenvalue we then solve the corre-
sponding equation.

Example 4.4. In the above example consider the eigenvalue 5. An eigen-

6

vector will be a 2× 1 vector satisfying:[
2 −3
−1 4

] [
x
y

]
= 5

[
x
y

]
[

2x− 3y
−1x+ 4y

]
=

[
5x
5y

]
This gives us the system:

2x− 3y = 5x

−1x+ 4y = 5y

This simplifies to:

3x+ 3y = 0

x+ y = 0

Observe these two equations are equivalent so as long as we satisfy one of
them we satisfy both of them. So for example if x = 1 and y = −1 we get
the eigenvector: [

1
−1

]

5 Graph Partitioning

5.1 The Fiedler Vector and Value

For a connected graph G with n vertices the Laplacian matrix L has n eigen-
values (with some repeats - we won’t go into the meaning of this) satisfying:

0 = λ1 ≤ λ2 ≤ ... ≤ λn

Moreover in all cases that we’ll look at we will in fact have:

0 = λ1 < λ2 ≤ ... ≤ λn

Definition 5.1.1. The smallest positive eigenvalue is called the Fiedler value,
named after Miroslav Fiedler (1926 - 2015). An associated eigenvector is called
a Fielder vector.

Example 5.1. The graph from the opening of the notes:

7

0 2 1 3

5 4 6

We saw has Laplacian matrix:

L =



2 0 −1 0 0 −1 0
0 3 −1 −1 −1 0 0
−1 −1 3 0 0 −1 0

0 −1 0 2 0 0 −1
0 −1 0 0 2 0 −1
−1 0 −1 0 0 2 0

0 0 0 −1 −1 0 2


The eigenvalues for this matrix are, with inequalities to reference above:

0 < 0.3588 < 2.0000 ≤ 2.2763 ≤ 3.0000 ≤ 3.5892 ≤ 4.7757

The Fielder value is then 0.3588. An associated Fiedler vector is:

v̄ =



0.48
−0.15

0.31
−0.35
−0.35

0.48
−0.42


5.2 Graph Partitioning

The goal of this set of notes is to demonstrate a simple way to divide a graph
into two “strongly connected” subgraphs when possible. For example consider
the graph:

0 2 1 3

5 4 6

Intuitively this can be viewed as a triangle (on the left, strongly connected) and
a square (on the right, strongly connected) with the triangle and square weakly
connected to one another, as such:

8

0 2 1 3

5 4 6

Given a graph, how can we store this (a data structure!) in a way which allows
us to obtain these clusters computationally?

It turns out to be the case that when a graph has a fairly natural partition into
two strongly connected subgraphs of equal size then we can identify the nodes
in each subgraph by looking at the Fiedler vector and separating the indices
by whether the entries are positive or negative. If there happen to be entries
which are 0 (happens rarely) they can go either way. We’ll group them with the
positive entries.

Example 5.2. In the graph we’ve been examining in our examples the
indices in the Fiedler vector which have positive entries are indices 0, 2, 5
and the indices in the Fiedler vector which have negative entries are indices
1, 3, 4, 6. If we look at the graph as two subgraphs, one with vertices 0, 2, 5
and the other with vertices 1, 3, 4, 6 we see the following:

0 2 1 3

5 4 6

The Fiedler vector has done what we claimed!

6 Notes

A few notes that may be useful to consider:

1. An eigenvector entry of 0 could go either way in terms of which cluster to
put it in.

2. Since any multiple of an eigenvector is also an eigenvector we might wonder
what software will do. In practice most software returns a unit eigenvector,
meaning it has length 1. However since there are two unit eigenvectors
(because we can negate) different software may give different results. I’ve
even seen Matlab give different results!

9

Example 6.1. Consider the matrix we saw earlier:

A =

[
−5 2
−7 4

]

We saw that v̄ =

[
2
7

]
is an eigenvector. To get a unit eigenvector

we’d divide by the length
√

4 + 49 =
√

53 and get:[
2/
√

53

7/
√

53

]
≈
[

0.27472112789
0.96152394764

]
Python’s numpy package gives the negative version of this:

% python3

>>> import numpy as np

>>> A = np.array ([[-5,2],[-7,4]])

>>> eval ,evec = np.linalg.eig(A)

>>> eval

array([-3., 2.])

>>> evec

array ([[-0.70710678 , -0.27472113] ,

[-0.70710678 , -0.96152395]])

>>>

We see the second eigenvalue of 2 corresponding to the second column
of the matrix: [

−0.27472113
−0.96152395

]

10

	Introduction
	Math Part 1
	The Laplacian Matrix
	The Determinant of a Matrix

	Kirchoff's Theorem for Spanning Trees
	Math Part 2
	Matrix and Vector Multiplication
	Eigenvectors and Eigenvalues - Definitions
	Eigenvectors and Eigenvalues - Finding

	Graph Partitioning
	The Fiedler Vector and Value
	Graph Partitioning

	Notes

