
Chapter 05 - Solving
Equations Symbolically

Table of Contents
Solving One Equation Symbolically .......................................................................................  1
Important! ..........................................................................................................................  1
Which Variable to Solve For? ...............................................................................................  2
Solving a System of Equations Symbolically ...........................................................................  3
Order of The Variables in the Solution ...................................................................................  4
Failure ...............................................................................................................................  5

We can ask MATLAB to try to solve equations two different ways. MATLAB can sometimes obtain a symbolic solu-
tion by manipulating the symbols in the equation(s) much like you would do with pencil and paper in an introductory
math class. Another way is to find a numerical answer which may be approximate. Generally the second approach is
good when the equation is very hard or impossible to solve symbolically.

Solving One Equation Symbolically
Suppose you want to find the solutions to the equation

4*x-5=7

Matlab can solve this with the solve command. First we symbolically define our variable x and then
apply the command. Try this. Note the use of the ==. Matlab is currently undergoing a change to bring it in
line with most computer programming languages. Now you see when checking for equality use ==. There
are places in Matlab where you can still geta way with one equals sign for checking equality (historical
reasons) but I recommend against it.

syms x
solve(4*x-5==7)

 
ans =
 
3
 

That was easy! MATLAB found the solution.

Important!
Matlab hasn't assigned the variable x here, it's just told you what the symbolic variable x would be to
solve the equation.

Here's another; notice that we don't need to syms x because Matlab already knows that x is symbolic.

solve(x^2+4*x-21)
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ans =
 
 -7
  3
 

You can also ask MATLAB to solve equations that involve arbitrary constants. A nice example is to try
to find the general solutions to the generalized form of the quadratic equation a*x^2+b*x+c=0. What
do you think the solutions should look like? Let's see if you're right...

syms x a b c
solve(a * x ^ 2 + b * x + c == 0)

 
ans =
 
 -(b + (b^2 - 4*a*c)^(1/2))/(2*a)
 -(b - (b^2 - 4*a*c)^(1/2))/(2*a)
 

Do those solutions look familiar? You may have to mentally re-arrange them to make them look the way
you're used to seeing them!

Which Variable to Solve For?
How does Matlab know which variable to solve for? It tries to follow common-sense respecting what we
usually solve for. Since the variable x is so common it solves for that one unless we tell it otherwise:

syms a x
solve(a*x-x^2==2)

 
ans =
 
 a/2 - (a^2 - 8)^(1/2)/2
 a/2 + (a^2 - 8)^(1/2)/2
 

If you prefer you can explicitly tell it to solve for x:

solve(a*x-x^2==2,x)

 
ans =
 
 a/2 - (a^2 - 8)^(1/2)/2
 a/2 + (a^2 - 8)^(1/2)/2
 

If we wished to solve for a; we'd have to tell Matlab:

solve(a*x-x^2==2,a)

 
ans =
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(x^2 + 2)/x
 

Solving a System of Equations Symbolically
You can use the solve command for a whole system of equations as well. For example, suppose we are
trying to find the solution to the following system of equations:

3*x+4*y+z-7=1
x-y-15=2
6*x-2*y-5*z+11=3

We can try to use the solve command to do this by feeding it all of the equations at once, separating
them with commas:

syms x y z
solve(3*x+4*y+z-7==1,x-y-15==2,6*x-2*y-5*z+11==3)

ans = 

  struct with fields:

    x: [1×1 sym]
    y: [1×1 sym]
    z: [1×1 sym]

Hmmmm. That output is a bit disappointing! To enable us to see the actual answers conveniently, we can
introduce an intermediate variable that will store the whole "vector" of answers. Then we can view the
values individually. Here's how that might look:

syms x y z
MyAnswers = solve (3*x+4*y+z-7==1,x-y-15==2,6*x-2*y-5*z+11==3)

MyAnswers = 

  struct with fields:

    x: [1×1 sym]
    y: [1×1 sym]
    z: [1×1 sym]

Now we can ask to see each of the three values individually, as follows:

MyAnswers.x

 
ans =
 
26/3
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MyAnswers.y

 
ans =
 
-25/3
 

MyAnswers.z

 
ans =
 
46/3
 

Another (perhaps better) way to accomplish the same thing is by assigning the value of the computation
to a vector comprised of variables like this:

[x y z] = solve (3*x+4*y+z-7==1,x-y-15==2,6*x-2*y-5*z+11==3)

 
x =
 
26/3
 
 
y =
 
-25/3
 
 
z =
 
46/3
 

Notice that the answers are displayed as fractions rather decimal expansions. Does that surprise you? It
actually makes sense because Matlab solved the equations symbolically. If you solved these equations by
hand, the last operation you would do in calculating z would be to take 185 and divide it by 13. Although
you could try to evaluate this as a decimal why should you? The expression 185/13 is exact. If this were
written as a decimal it would be 14.230769230769230769230769.... We could only write down
an approximation this way and besides -- it looks really hideous!

Order of The Variables in the Solution
The solve command returns a vector with entries in alphabetical order. For example

solve(x+y==0,x-y+2==0)

will return the vector whose first entry is x and whose second entry is y. If you do something like

[y x]=solve(x+y==0,x-y+2==0)

then what happens is that y gets assigned to the x solution and x gets assigned to the y solution. This
is not what you want.
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To unconfuse things make sure that your entries in the vector on the left are in alphabetical order! For
example if your variables are dogs and cats then don't do:

[dogs cats] = ...

instead do

[cats dogs] = ...

Failure
This symbolic approach works well for some problems. Unfortunately there is a large class of problems
that will defy attempts to solve them this way. For example:

solve(log(x)+x+1==0)
ans =

wrightOmega(-1)

Matlab has used some really fancy confusing math to try to solve this and has given back a very confusing
answer. Instead of taking this approach, this equation can be solved using a numerical method which will
yield a very good approximation to the precise answer. We'll see this soon.
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