
Chapter 17 - Function M-Files Part 3

Table of Contents
I'm Lost - Getting Started ... 1
A Fancier Example .. 2
More Notes and the Midpoint Rule .. 4

I'm Lost - Getting Started
Suppose we want to write a function m-file called myfunstuff. Don't worry about anything else just
yet. The first thing we should do, in Matlab is:

edit myfunstuff.m

Note that: The filename has to match the function name.

Create the basic framework. We're going to assume that the function returns a single return variable and
we'll denote it r. If the function m-file is going to take one parameter called a, then write the following
just to get thing testing:

function r = myfunstuff(a)
 r = a+1;
end

Save this file. Now, back in the Matlab console, try typing the following and we'll see:

myfunstuff(17)
ans =
 18

Take a minute to understand what's happening. In the console we type funstuff(17). Matlab calls the
funstuff function and sends it the value 17. The funstuff function gets the value 17 and puts it
in the variable a. It then sets r=a+1 so r=18. Since we used r as the return variable that gets sent back
and shows in the Matlab console.

We can try it with other values too:

myfunstuff(-6)
ans =
 -5
myfunstuff(0)
ans =
 1

Now then, adding 1 is pretty boring. The beauty of a function m-file is that we can add all sort of logic
inside the file. Suppose we wanted the function to look at a and if it's positive, add one, if it's negative,
subtract 1 and if it's zero, leave it alone. We would do:

function r = myfunstuff(a)
 if (a > 0)

1

Chapter 17 - Function M-Files Part 3

 r = a + 1;
 elseif (a < 0)
 r = a - 1;
 else
 r = a;
 end
end

Again, take minute to think about how this works before trying it. When we try it we'll see:

myfunstuff(-6)
ans =
 -7
myfunstuff(0)
ans =
 0
myfunstuff(7.5)
ans =
 8.5

A Fancier Example
The real power in all of this is that we can pass many parameters to the function m-file and the function
m-file can do almost anything with those parameters and pass something back. Moreover we don't have
to pass just numbers. We can pass functions, for example, but they have to be function handles. Inside the
function m-file we can have if statements, for loops and while loops, just to name a few things.

Suppose we want our function m-file to accept a function and a value. First our very basic structure would
look something like this;

function r = myfunstuff(f,a)
 r = 12345;
end

Notice that it doesn't do anything at all, nothing, yet, except return the value 12345 and that's just for
testing.

We can try it, keeping in mind that the function must be sent as a function handle:

myfunstuff(@(x) x^2,23)
ans =
 12345
myfunstuff(@(x) sin(x),17)
ans =
 12345

It returns 12345 each time, because that's what r is. Everything else is totally ignored.

Okay, just for testing, suppose we want to plug the value into the function and return that. Easy!

function r = myfunstuff(f,a)
 r = f(a);
end

And test it:

2

Chapter 17 - Function M-Files Part 3

myfunstuff(@(x) sin(x),17)
 ans =
 -0.9614

That's because sin(17)=-0.9614 as Matlab can tell us:

sin(17)

ans =
 -0.9614

Okay now, let's get fancy. Suppose we know that a will be positive and we want to plug a into f, then
a/2, then a/3, and so on, until we reach some n where a/n is less than 1, and we want to add all the
resulting values up, excluding that final value. How would we do this?

First we know it'll be a while loop because we don't know how many steps it'll take.

Moreover we want it to do f(a/n) for n=1,... until a/n<1. In other words we want it to continue
while (a/n >= 1). Okay, so far consider this:

function r = myfunstuff(f,a)
 n = 1;
 while (a/n >= 1)
 n = n + 1;
 end
 r = f(a);
end

Really, really take a minute to understand what this does and doesn't do. It accepts parameters f and a. It
sets n=1 and then, while (a/n >= 1) it adds 1 to n. This means when a/n < 1 it'll stop.

Notice that other than increasing n nothing else happens inside the loop. Otherwise the function m-file
still returns f(a).

If we test it from Matlab we'll see:

myfunstuff(@(x) sin(x),17)
 ans =
 -0.9614

Just like before. The function m-file is going through the while loop but we don't see anything related
to that.

Okay, so next we need to take the a/n values and plug them into f, and we need to add them. To add them
we'll declare a new variable, called runningtotal, we'll start it at 0 and increase it inside the loop:

function r = myfunstuff(f,a)
 n = 1;
 runningtotal = 0;
 while (a/n >= 1)
 runningtotal = runningtotal + f(a/n);
 n = n + 1;
 end
 r = f(a);
end

If we test this:

3

Chapter 17 - Function M-Files Part 3

myfunstuff(@(x) sin(x),17)
 ans =
 -0.9614

Oh drat, same result. Why? Oh, we're still doing r=f(a) we need to return our sum, our runningto-
tal. So finally:

function r = myfunstuff(f,a)
 n = 1;
 runningtotal = 0;
 while (a/n >= 1)
 runningtotal = runningtotal + f(a/n);
 n = n + 1;
 end
 r = runningtotal;
end

And now we see:

myfunstuff(@(x) sin(x),17)
 ans =
 8.3691

More Notes and the Midpoint Rule
Don't be afraid to play inside the m-file while we work. we can display things to check on them as we go.

For another example we're going to step through writing a midpoint rule calculator, including baby steps,
testing, etc., as if we'd never done this before.

First we edit the file:

edit mymidpointrule.m

We create the basic structure. We want to pass it a function, an interval and a number of subintervals,
so something like:

function r = mymidpointrule(f,a,b,n)
 r = 17;
end

The r=17 is there for testing and to remind myself that I'd better make r equal to the thing we want at
the end!

Next, the midpoint rule involves dividing [a,b] into n subintervals, finding the midpoint of each, plug-
ging each into f, multiplying by the subinterval width, and adding. Whew!

First an easy bit, let's find the subinterval width, which would be (b-a)/n:

function r = mymidpointrule(f,a,b,n)
 sw = (b-a)/n
 r = 17;
end

If we test this in Matlab:

mymidpointrule(@(x) x^2,0,2,4)

4

Chapter 17 - Function M-Files Part 3

 sw =
 0.5000
 ans =
 17

Whoa, why are two things showing up? Well, the sw is showing up (and it's right, because the interval
length is 2 and we're using 4 subintervals) because that line in the m-file has no semicolon at the end. The
ans is the return value. For now we can leave the semicolon out to see the value.

Next we need a for loop. It needs to start at the first midpoint and go to the last, and it needs to do it
in steps of sw.

The first midpoint is a+sw/2 and the last is b-sw/2. So how about:

function r = mymidpointrule(f,a,b,n)
 sw = (b-a)/n
 for x = [a+sw/2:sw:b-sw/2]
 x
 end
 r = 17;
end

That single line x in there just spits the value back, so if we test this:

mymidpointrule(@(x) x^2,0,2,4)

 sw =
 0.5000
 x =
 0.2500
 x =
 0.7500
 x =
 1.2500
 x =
 1.7500
 ans =
 17

Now it shows we sw and then it goes through the midpoints, one by one, from 0.2500 (the midpoint of
the first subinterval) in steps of 0.5000, to 1.7500 (the midpoing of the second subinterval).

Next, those x values should be plugged into f, so let's do that. Also let's suppress the sw with a semicolon
since we know it's behaving properly:

function r = mymidpointrule(f,a,b,n)
 sw = (b-a)/n;
 for x = [a+sw/2:sw:b-sw/2]
 f(x)
 end
 r = 17;
end

Let's test it:

mymidpointrule(@(x) x^2,0,2,4)

5

Chapter 17 - Function M-Files Part 3

 ans =
 0.0625
 ans =
 0.5625
 ans =
 1.5625
 ans =
 3.0625
 ans =
 17

Now we no longer see sw and we see f at each midpoint.

Next, we'd like to multiply each of those f values by sw:

function r = mymidpointrule(f,a,b,n)
 sw = (b-a)/n;
 for x = [a+sw/2:sw:b-sw/2]
 f(x)*sw
 end
 r = 17;
end

And test it:

mymidpointrule(@(x) x^2,0,2,4)
 ans =
 0.0312
 ans =
 0.2812
 ans =
 0.7812
 ans =
 1.5312
 ans =
 17

Looking better, these are the areas of the small rectangles! Almost finished. Next, let's add them up, with
a runningtotal:

function r = mymidpointrule(f,a,b,n)
 sw = (b-a)/n;
 runningtotal = 0;
 for x = [a+sw/2:sw:b-sw/2]
 runningtotal = runningtotal + f(x)*sw
 end
 r = 17;
end

And test it:

mymidpointrule(@(x) x^2,0,2,4)
 runningtotal =
 0.0312
 runningtotal =

6

Chapter 17 - Function M-Files Part 3

 0.3125
 runningtotal =
 1.0938
 runningtotal =
 2.6250
 ans =
 17

Almost done! Lastly, that final runningtotal should be the value returned and we should add a semi-
colon to suppress the output from each step:

function r = mymidpointrule(f,a,b,n)
 sw = (b-a)/n;
 runningtotal = 0;
 for x = [a+sw/2:sw:b-sw/2]
 runningtotal = runningtotal + f(x)*sw;
 end
 r = runningtotal;
end

And now, ta-da!

mymidpointrule(@(x) x^2,0,2,4)
 ans =
 2.6250

Moreover since the midpoint rule approximate the integral we can test it using a really big n value and
comparing to the integral:

mymidpointrule(@(x) x^2,0,2,1000)
 ans =
 2.6667
int(x^2,0,2)
 ans =
 8/3

It works!

Published with MATLAB® R2017a

7

	Table of Contents
	I'm Lost - Getting Started
	A Fancier Example
	More Notes and the Midpoint Rule

