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12.1 Introduction

Let’s get started with a simple example.

Example 12.1. Consider this picture which represents seven objects connected
to one another:

1 3 2 4

6 5 7

This picture could represent a computer network, a network of friends, or the
lines could represent roads between locations or borders between countries.

The study of structures like these is the heart of graph theory and in order to
manage large graphs we need linear algebra.

12.2 Basic Definitions

Definition 12.2.0.1. A graph is a collection of vertices (nodes or points) con-
nected by edges (line segments).

Definition 12.2.0.2. A graph is simple if has no multiple edges, (meaning two
vertices can only be connected by one edge) and no loops (a vertex cannot have
an edge connecting it to itself).

Definition 12.2.0.3. A graph is connected if it is in one single connected piece.

All the graphs we will look at will be simple connected graphs.

The example in the introduction is then a simple connected graph with seven
vertices connected by eight edges.

Definition 12.2.0.4. The degree of a vertex is the number of edges connected
to the vertex.
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Definition 12.2.0.5. For a simple graph G with n vertices the degree matrix
for G is the n× n diagonal matrix D such that dii equals the degree of the ith

vertex.

Definition 12.2.0.6. For a simple graph G the adjacency matrix is the sym-
metric matrix A such that aij equals 1 if vertices i and j are connected by an
edge and 0 otherwise.

Definition 12.2.0.7. For a simple graph G the Laplacian matrix L is defined
by L = D −A.

The term Laplacian matrix for a graph is actually very general. There are
lots of different Laplacian matrices, this one is by far the most common and is
technically the unnormalized graph Laplacian matrix but since it’s the only one
we will look at we will simply called it the Laplacian matrix.

Example 12.1 Revisited. For the graph given in the introduction we have:

D =



2 0 0 0 0 0 0
0 3 0 0 0 0 0
0 0 3 0 0 0 0
0 0 0 2 0 0 0
0 0 0 0 2 0 0
0 0 0 0 0 2 0
0 0 0 0 0 0 2



A =



0 0 1 0 0 1 0
0 0 1 1 1 0 0
1 1 0 0 0 1 0
0 1 0 0 0 0 1
0 1 0 0 0 0 1
1 0 1 0 0 0 0
0 0 0 1 1 0 0



L = D −A =



2 0 −1 0 0 −1 0
0 3 −1 −1 −1 0 0
−1 −1 3 0 0 −1 0

0 −1 0 2 0 0 −1
0 −1 0 0 2 0 −1
−1 0 −1 0 0 2 0

0 0 0 −1 −1 0 2



Both the adjacency matrix and the Laplacian matrix contain all information
about the graph and both can be used to analyze the graph.
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12.3 Basic Graph Analysis

The adjacency matrix of a graph can give us some interesting facts about that
graph.

Definition 12.3.0.1. A walk from vertex i to vertex j is an alternating series
of connected vertices and edges that starts with vertex i and ends with vertex
j. There are no restrictions on repeating edges or vertices.

Theorem 12.3.0.1. If A is the n × n adjacency matrix of a graph with n
vertices then for every integer k ≥ 1, the ij-entry of Ak equals the number of
walks of length k from vertex i to vertex j.

Proof. The proof proceeds by induction.

The k = 1 case is clear by definition of A.

Assume that the statement is true for Ak and look at the ij-entry of Ak+1. By
the definition of matrix multiplication

(Ak+1)ij = (Ak)i1a1j + (Ak)i2a2j + ...+ (Ak)inanj

Since (Ak)il equals the number of walks of length k from vertex i to vertex l and
alj = 1 iff there is an edge from vertex l to vertex j (and 0 otherwise) it follows
that the right side above equals the total number of walks of length k + 1 from
vertex i to vertex j as desired.

Example 12.2. Consider the A for the introductory graph. We have:

A5 =



12 8 19 8 8 13 2
8 2 27 25 25 8 0

19 27 14 2 2 19 14
8 25 2 0 0 8 18
8 25 2 0 0 8 18

13 8 19 8 8 12 2
2 0 14 18 18 2 0


Thus, for example, there are 27 walks of length 5 from vertex 2 to vertex 3 (and
from 3 to 2) and there are 13 walks of length 5 from vertex 1 to vertex 6 (and
from 6 to 1).

This theorem gives us an interesting use of A3. First, a definition:
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Definition 12.3.0.2. The trace of a square matrix M , denoted tr(M), equals
the sum of the entries along the main diagonal.

Then we have the following:

Theorem 12.3.0.2. Thus the number of triangles in a graph equals 1
6 tr(A3).

Proof. A walk of length 3 from a vertex to itself is a triangle, and that triangle
actually yields two walks, one in each direction. It follows that if a vertex i is
contained in a triangle then (A3)ii = 2. From there we see that tr(A3) equals
twice the number of vertices contained in triangles. However since each triangle
contains three vertices it follows that tr(A3) equals six times the number of
triangles.

This same approach doesn’t work for squares, pentagons, etc. Why not?

12.4 Graph Partitioning

12.4.1 Introduction to Partitioning

Consider the graph from the chapter opening:

Example 12.1 Revisited.

1 3 2 4

6 5 7

One way we might immediately describe this graph is that it is a square con-
nected to a triangle. What we are doing when we see this is we are breaking
the graph into those two subgraphs.

This process, of breaking a graph into two or more subgraphs, has generic uses
when analyzing networks.

Consequently what we’d like to know is if there is a way of doing this easily.

In order to investigate we first need some more definitions.

Definition 12.4.1.1. Given a graph G with n vertices V = {1, 2, ..., n} For an
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integer k ≥ 2 a k-partition of G is an partition of the vertices into into k subsets
V1, ..., Vk such that the subsets do not overlap and their union is all of V . We
will write P = (V1, V2, ..., Vk). A 2-partition is often just called a partition.

Example 12.1 Revisited. For example the partition we intuitively saw with
our starting graph could be denoted P = ({1, 3, 6}, {2, 4, 5, 7}).

Sometimes we describe a partition by describing which edge(s) would need to
be removed in order to disconnect the graph into the resulting pieces. However
we’re not actually removing the edges, just indicating that they would do the
job.

Example 12.1 Revisited. For example we might say that our starting graph’s
partition could be partitioned by removing the (2, 3) edge.

Definition 12.4.1.2. For a partition P = (V1, V2) of a graph G we define the
cut of P , denoted cut(P ), as the number of edges joining a vertex in V1 with a
vertex in V2.

Example 12.1 Revisited. In our opening example we would have cut(P) = 1
because there is only one edge to count, the (2, 3) edge.

So how might we want to partition a graph? One obvious way is:

Definition 12.4.1.3. A minimum cut is a partition P of a graph G in a manner
that minimizes cut(P ). In other words it’s the minimum number of edges we
need to remove to partition the graph.

One problem with a minimum cut is that if there is a stray vertex connected
to the rest of the graph by one edge then this would be a minimum cut. This
tends to leave the subgraphs unbalanced which is somewhat unsatifactory.

Example 12.3. Consider this example:

1

2

3

4

5 6

A minimum cut can be achieved by removing the (5, 6) edge. However the result
(the bow-tie on the left and the single vertex on the right) isn’t very satisfactory

6



in a balanced sense.

The usual solution to this is to minimize cut(P ) with the added condition that
we try to keep the number of vertices in each of the two remaining subgraphs
as equal as possible.

In the above example we might remove the (1, 4) and (1, 5) edges which is more
edges than just the (5, 6) edge (two instead of one) but gains the advantage that
the partition subsets have equal size.

It is this attempt at a balanced approach we will take, attempting to find a
partition P = (V1, V2) which minimizes cut(P ) while keeping |V1| ≈ |V2|.

12.4.2 Introduction to the Fiedler Method

The Fiedler Method is an easy way to partition a graph. First we will state the
method in its most fundamental form and give some simple examples. Lots of
questions will remain unanswered.

Next we will look at what the Fiedler method is actually doing. After that we
can look at some more complicated examples.

Lastly we will go through a rigorous proof.

The Fiedler Method is named after Miroslav Fiedler, a Czech mathematician,
who worked in graph theory and linear algebra. This method was presented by
him in 1973.

12.4.3 Basic Fiedler Method

First, a few definitions and facts about the Laplacian Matrix L = D − A. The
following are addressed in more detail later but let’s just get them out right
now.

Fact 12.4.3.1.

If G is a simple connected graph with n vertices and if L is the Laplacian matrix
for G then L has n real eigenvalues satisfying

0 = λ1 < λ2 ≤ λ3 ≤ ... ≤ λn

Definition 12.4.3.1. The Fiedler Value or the algebraic connectivity of a graph
is the second smallest eigenvalue of its Laplacian matrix L.

The Fiedler Value gives a measurement as to how well connected the graph
is. This value only has meaning when compared to something called the vertex
connectivity which we won’t go into.
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Definition 12.4.3.2. A Fiedler Vector of a graph is an eigenvector correspond-
ing to the Fiedler Value.

Notice that the eigenspace corresponding to the Fiedler Value may be multidi-
mensional.

Example 12.1 Revisited. In our example:

1 3 2 4

6 5 7

we saw that:

L =



2 0 −1 0 0 −1 0
0 3 −1 −1 −1 0 0
−1 −1 3 0 0 −1 0

0 −1 0 2 0 0 −1
0 −1 0 0 2 0 −1
−1 0 −1 0 0 2 0

0 0 0 −1 −1 0 2


the eigenvalues in order are:

0, 0.3588, 2.0000, 2.2763, 3.0000, 3.5892, 4.7757

Note that the Fiedler Value is 0.3588. A Fiedler Vector is an eigenvector corre-
sponding to this. Any nonzero multiple of the following unit vector will suffice:

v̄ =



0.48
−0.15

0.31
−0.35
−0.35

0.48
−0.42


At its most basic, the Fiedler Method basically states that we can achieve a
“reasonable” partition into two subgraphs by separating the vertices according
to the sign of the values in a Fiedler Vector v̄ where each entry corresponds to a
vertex. This means we group together the vertices i with vi = + and we group
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together the vertices i with vi = −. In the case that vi = 0 we simply have to
make a choice.

By “reasonable” we mean that an attempt is made to remove as few edges as
possible while keeping the resulting subgraphs of approximately equal size.

It’s worth noting that the Fiedler Method is not perfect, as we’ll see, but often
the problems that arise can be easily accounted for.

Example 12.1 Revisited. In our example above vi = + for i = 1, 3, 6 and
vi = − for i = 2, 4, 5, 7, so that P = ({1, 3, 6}, {2, 4, 5, 7}). This means we
separate the vertices accordingly:

1 3 2 4

6 5 7

This is just what we predicted!

Example 12.4. Let’s go back to the bow-tie:

1

2

3

4

5 6

Here we have Laplacian Matrix:

L =


4 −1 −1 −1 −1 0
−1 2 −1 0 0 0
−1 −1 2 0 0 0
−1 0 0 2 −1 0
−1 0 −1 3 −1

0 0 0 0 −1 −1


The eigenvalues in order are:

0, 0.6314, 1.4738, 3, 3.7877, 5.1071

Note that the Fiedler value is 0.6314. A Fiedler Vector is an eigenvector corre-
sponding to this. Any nonzero multiple of the following unit vector will suffice:
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v̄ =


−0.16
−0.44
−0.44

0.07
0.26
0.71


We separate the vertices accordingly:

1

2

3

4

5 6

This is a more-balanced partition than the minimum cut.

Example 12.5. Consider this graph:

1 2

3 4 5

6 7

8

We have

L =



2 0 −1 −1 0 0 0 0
0 2 0 −1 −1 0 0 0
−1 0 2 0 0 −1 0 0
−1 −1 0 4 0 −1 −1 0

0 −1 0 0 3 0 −1 −1
0 0 −1 −1 0 2 0 0
0 0 0 −1 −1 0 3 −1
0 0 0 0 −1 0 −1 2


The eigenvalues in order are:

0, 0.4869, 1.6769, 2.0000, 2.7647, 3.4963, 4.0000, 5.5753
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The Fiedler Value is therefore 0.4869. A Fiedler Vector is an eigenvector corre-
sponding to this.



0.38
−0.20

0.50
0.07
−0.38

0.38
−0.30
−0.44


So a reasonable partition is achieved via P = ({1, 3, 4, 6}, {2, 5, 7, 8}). This
requires removing the (2, 4) and (4, 7) edges:

1 2

3 4 5

6 7

8

Example 12.6. Consider this graph:

1
2

3

4

5
6

7 8

9

10
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We have

L =



2 −1 0 0 0 0 −1 0 0 0
−1 2 −1 0 0 0 0 0 0 0

0 −1 2 −1 0 0 0 0 0 0
0 0 −1 2 −1 0 0 0 0 0
0 0 0 −1 2 −1 0 0 0 0
0 0 0 0 −1 2 −1 0 0 0
−1 0 0 0 0 −1 3 −1 0 0

0 0 0 0 0 0 −1 3 −1 −1
0 0 0 0 0 0 0 −1 2 −1
0 0 0 0 0 0 0 −1 −1 2


The eigenvalues in order are:

0, 0.2375, 0.7530, 1.0000, 2.4450, 2.5634, 3.0000, 3.4832, 3.8019, 4.7159

Thus the Fiedler Value is 0.2375. Since this is positive the graph is connected.
A Fiedler Vector is an eigenvector corresponding to this. From Matlab:



0.11
0.25
0.33
0.33
0.25
0.11
−0.05
−0.37
−0.49
−0.49


So a reasonable partition is achieved via P = ({1, 2, 3, 4, 5, 6}, {7, 8, 9, 10}). This
requires removing the (1, 7) and (6, 7) edges so cut(P ) = 2.

1
2

3

4

5
6

7 8

9

10

Notice that obtaining a cut of 1 is possible but would leave a much more un-
balanced graph. Notice that another partition actually does better than the
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Fiedler Method, with P = ({1, 2, 3, 4, 5}, {6, 7, 8, 9}) having cut(P ) = 2 and
also |V1| = |V2|. We’ll look at how this relates to the Fiedler Method later.

12.4.4 What are We Wishing For?

Earlier we commented that ideally for a partition P = (V1, V2) of a graph G we
would like to minimize cut(P ) while keeping |V1| ≈ |V2|.

To formalize this first observe that a partition of a graph G with n vertices can
be defined by choosing a vector x̄ ∈ Rn with each entry xi = ±1. Having such
a vector we can then create a partition by taking the vertices i with xi = +1 as
one subset and the vertices i with xi = −1 as the other subset.

More formally
P = ({i |xi = +1}, {i |xi = −1})

Keeping the sizes of the subsets equal amounts to having
n∑

i=1

xi = 0 and keeping

them close amounts to having
n∑

i=1

xi ≈ 0

In what follows, the edge set of a graph only includes each edge once so for
example if (1, 2) ∈ E then we don’t count (2, 1) as different.

Lemma 12.4.4.1. For any partition P = (V1, V2) of a graph G with edge set
E we have

cut(P ) =
1

4

∑
(i,j)∈E

(xi − xj)2

Proof. Consider that∑
(i,j)∈E

(xi − xj)2 =
∑

(i,j)∈E
xi=−xj

(xi − xj)2 +
∑

(i,j)∈E
xi=xj

(xi − xj)2

=
∑

(i,j)∈E
xi=−xj

(±2)2 +
∑

(i,j)∈E
xi=xj

(0)2

= 4 cut(P )

The 1
4 doesn’t matter for minimizing so the goal can be rephrased as trying to

minimize
∑

(i,j)∈E
(xi − xj)2 with the conditions that

n∑
i=1

xi ≈ 0. and xi = ±1.
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Notice that this is computationally intensive and involves checking all possible
combinations of the xi.

For example if the graph has 10 vertices then there are 210 = 1024 possible x̄.
and if the graph has 100 vertices then there are 2100 = 1267650600228229401496703205376
possible x̄.

In addition we need to decide how close we want |V1| ≈ |V2| when looking for a
trade-off in minimizing the cut value.

What we do instead is relax the requirement somewhat.
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12.4.5 What are We Getting?

Old Goal: Choose x̄ to minimize
∑

(i,j)∈E
(xi − xj)

2 with the conditions that

n∑
i=1

xi ≈ 0 and xi = ±1.

New Goal: Choose x̄ to minimize
∑

(i,j)∈E
(xi − xj)

2 with the conditions that

n∑
i=1

xi = 0 and
n∑

i=1

x2i = n.

Notice that the New Goal is a slightly weaker version of the Old Goal. The Old
Goal would satisfy the New Goal but not necessarily the reverse.

What will the xi values in this x̄ mean? Consider the following observations:

• The first condition makes sure that all the xi average to 0, meaning that
they should be spread out around 0.

• The second condition prevents all the xi from being too close to 0 and
prevents any one xi from being

√
n or larger.

• If two vertices i and j are connected by an edge then minimizing the
objective means keeping the corresponding xi and xj close so that they
only contribute a small value to the objective.

• If two vertices i and j are not connected by an edge then the corresponding
xi and xj can be further apart.

• Expanding on the previous two bullets slightly, suppose there were two
numerically distant clusters of xi values corresponding to two clusters of
vertices. If those two clusters of vertices were connected by many edges
then this would contribute a large value to the objective function. However
since we’re minimizing the objective function this will tend to not happen.
What this means is that any two numerically distant clusters of xi values
must correspond to weakly connected clusters of vertices.

• Lastly note that from the previous bullets we can see that it’s not reason-
able to have a few values less than 0 and many values more than 0 (or
the reverse) because these would not average out to 0 unless there were a
large gap, which can’t exist.

The practical upshot of all of this is that all xi will be spread around the interval
(−
√
n,
√
n) in such a way that clusters of strongly connected vertices will tend

to have close xi values and weakly connected clusters will tend to have distant
xi values.

Thus we can use the clustering of the xi values to partition the graph. Using
the cutoff of 0 is convenient because it is the average but it may not be ideal in
certain situations, or it may be just one of many options.
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Example 12.7. Here is our original example with the values from the Fiedler
vector labeling the vertices.

1

0.48

2

-0.15

3

0.31

4

-0.35

5

-0.35

6

0.48

7

-0.42

Notice the largest gap in the value is the break between positives and negatives
and is where we partitioned the graph.

An obvious way to split is to take the vertices corresponding to positive values
and those correspoding to negative values and to put 0 in either one group or
the other but there are other choices, including splitting at the median.

12.4.6 More and Trickier Examples

We’ve seen what happens in clear-cut examples but the nature of the Fiedler
Vector, whose values indicate a sort of connectedness, lends itself to more than
just simple partitions. Now we will look at some examples in which:

• There is a 0 in the Fiedler Vector.

• Repeated values in the Fiedler Vector might yield choices.

• We might choose a k-partition with k > 2.

• The eigenspace corresponding to the Fiedler Value has dimension greater
than 1.

• The Fiedler Vector can give insight into the graph’s structure.

• The Fiedler Vector fails to be helpful at all!

Example 12.8. Consider this innocuous looking example:

1

2

3

4

5
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The Laplacian matrix is

L =


4 −1 −1 −1 −1
−1 2 −1 0 0
−1 −1 2 0 0
−1 0 0 2 −1
−1 0 0 −1 2


The eigenvalues in order are

0, 1, 3, 3, 5

so the Fiedler Value is 1. A Fiedler Vector is:
0

−0.5
−0.5

0.5
0.5


Here is the graph with the vertices labeled.

1

0

2

-0.5

3

-0.5

4

0.5

5

0.5

It’s clear both from the graph and from the vector that the 1 vertex is difficult
to categorize.

Even though the Fiedler Method doesn’t explicitly tell us what to do with that
vertex the way that the values are spread out makes our options fairly clear.
We can either partition as ({2, 3, 1}, {4, 5}) or as ({2, 3}, {1, 4, 5}).

We can even see this sort of behavior (options!) arising when the Fiedler method
does work.

Example 12.6 Revisited.

Consider the earlier example:
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1
2

3

4

5
6

7 8

9

10

Here is the Fiedler vector from earlier:



0.11
0.25
0.33
0.33
0.25
0.11
−0.05
−0.37
−0.49
−0.49


Here is the graph with the vertices correspondingly labeled:

1

0.112

0.25

30.33

40.33

5

0.25

6

0.11

7-0.05 8 -0.37

9

-0.49

10

-0.49

Our choice to separate by the negative and positive values is a classic approach.

However other approaches may arise. Here is the same Fiedler Vector we saw
before except with the vector entries placed in increasing order (equal values
chosen arbitrarily) with the vertex number (that is, the vector index) labeling
each.
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Vertex Entry
9 -0.49

10 -0.49
8 -0.37
7 -0.05
1 0.11
6 0.11
2 0.25
5 0.25
3 0.33
4 0.33

Another alternative would be to take the smallest half of the entries. Since 0.11
appears twice we could split those two up, meaning we could take vertex 1 with
the first half and overtex 6 with the second half, or the reverse, giving either:
({9, 10, 8, 7, 1}, {6, 2, 5, 3, 4})

1

0.112

0.25

30.33

40.33

5

0.25

6

0.11

7-0.05 8 -0.37

9

-0.49

10

-0.49

or ({9, 10, 8, 7, 6}, {1, 2, 5, 3, 4})

1

0.112

0.25

30.33

40.33

5

0.25

6

0.11

7-0.05 8 -0.37

9

-0.49

10

-0.49
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Or we could take both 1 and 6 with the first half, giving ({9, 10, 8, 7, 1, 6}, {2, 5, 3, 4})

1

0.112

0.25

30.33

40.33

5

0.25

6

0.11

7-0.05 8 -0.37

9

-0.49

10

-0.49

Or we could argue that since the 7 vertex has value very close to 0 perhaps it
should just be left alone. Then we would partition into more than two subgraphs,
giving ({9, 10, 8}, {7}, {1, 6, 2, 5, 3, 4}).

1

0.112

0.25

30.33

40.33

5

0.25

6

0.11

7-0.05 8 -0.37

9

-0.49

10

-0.49

The Fiedler Vector can also help us figure out the structure of a graph which is
not given in an obvious way.

Example 12.9. Consider this example:
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1

2
3

4

5

6

7

8
9

10

11

The Laplacian matrix is not shown but the eigenvalues are

0.0000, 0.1483, 0.5858, 2.0000, 2.2170, 2.3820, 3.4142, 3.6913, 4.0000, 4.6180, 4.9434

and so the Fiedler Value is 0.1483.

The Fiedler Vector is:



0.0000
0.0726
0.3626
−0.3626
−0.2798
−0.3626

0.3626
0.3917
−0.3917
−0.0726

0.2798


Sorted with the corresponding vertex numbers:
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Vertex Entry
9 -0.3917
6 -0.3626
4 -0.3626
5 -0.2798

10 -0.0726
1 0
2 0.0726

11 0.2798
7 0.3626
3 0.3626
8 0.3917

The values here are basically divided into three groupings according to the
vertices ({9, 4, 6, 5}, {10, 1, 2}, {11, 3, 7, 8}) so it might make sense to partition
the graph into three subgraphs.

Here is the graph redrawn with those groupings separated and with the cut
edges as dotted lines. Basically I dragged the first group left and the third
group right from the original graph. The underlying structure becomes much
more clear now!

9

4

6

5

10

1

2

11

3

7
8

If we clean it up a bit:

9

4

6

5

1

10

2 11

7

3

8

Here’s a particularly messy example which looks so nice at the start.

Example 12.10. Consider the simple square:
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1 2

34

The Laplacian matrix for this graph is:

L =


2 −1 0 −1
−1 2 −1 0

0 −1 2 −1
−1 0 −1 2


The eigenvalues are {0, 2, 2, 4} so the Fiedler Value has multiplicity 2 and hence
has a two dimensional subspace. This subspace is spanned by the two corre-
ponding vectors: 

0.7071
0

−0.7071
0

 and


0

0.7071
0

−0.7071


However this gives lots of confusing options:

If we use the first vector then vertices 1 and 3 are separate but depending on
what we do with vertices 2 and 4 we could get either ({1}, {2, 3, 4}), ({1, 2}, {3, 4}),
({1, 4}, {2, 3}) or ({1, 2, 4}, {3}).

If we use the second vector then vertices 2 and 4 are separate but depend-
ing on what we do with vertices 1 and 3 we could get either ({2}, {1, 3, 4}),
({1, 2}, {3, 4}), ({2, 3}, {1, 4}) or ({1, 2, 3}, {4}).

Any linear combination using nonzero multiples of both vectors will lead to a
Fiedler vector of the form:

+
+
−
−

 or


+
−
−
+

 or


−
+
+
−

 or


−
−
+
+


These yield only the two partitions ({1, 2}, {3, 4}) and ({1, 4}, {2, 3}).

Thus in total there are six possibilities:

({1, 2}, {3, 4}), ({1, 4}, {2, 3}), ({1}, {2, 3, 4}), ({1, 2, 4}, {3}), ({2}, {1, 3, 4}),
({1, 2, 3}, {4})
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with corresponding pictures:

1 2

34

1 2

34

1 2

34

1 2

34

1 2

34

1 2

34

In this example the Fiedler method can’t decide other than ensuring that either
1 and 3 are separate or 2 and 4 are separate, which actually seems reasonable,
but beyond that options abound.

Here’s an example where the Fiedler vector doesn’t do the best job of partition-
ing the graph.

Example 12.11. Consider the graph:

1

2

34
5

6

7

8

9

10
11 12

13

14

15
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The Fiedler Value is 0.3424 and the Fiedler Vector is:

−0.3778
−0.3778

0.3819
0.3819
0.0187
0.1027
−0.0718
−0.3121
−0.0177

0.0520
−0.0177

0.3070
0.3261
−0.3142
−0.0813


Sorted with the corresponding vertex numbers:

Vertex Entry
1 -0.3778
2 -0.3778

14 -0.3142
8 -0.3121

15 -0.0813
7 -0.0718
9 -0.0177

11 -0.0177
5 0.0187

10 0.0520
6 0.1027

12 0.3070
13 0.3261
3 0.3819
4 0.3819

The Fiedler Method does a pretty mediocre job of dividing the graph into two
subgraphs using ({1, 2, 14, 8, 15, 7, 9, 11}, {5, 10, 6, 12, 13, 3, 4}) as shown here:

25



1

2

14

8

15

7

9

11

5

10

6

12

13

34

12.4.7 Why Might the Fiedler Method Have Issues

The Fiedler vector tends to have issues with graphs in which it’s difficult to
measure distance between vertices. For example in the cycle:

1

23

4

5

6

7 8

9

10

It’s clear that vertices 1 and 6 are far apart but are 1 and 2 close or not?
Intuitively they are but by some measurement (around the wrong way) they’re
not. The mathematics in the Fiedler Method tends to stumble on things like
this.

12.4.8 Why Does the Fiedler Vector Do This?

The final thing we need to address is why the Fiedler Method accomplishes our
relaxed goal from a mathematical standpoint.

Lemma 12.4.8.1. Let G be a graph with n vertices and let L be its Laplacian
matrix. Then L is orthogonally diagonalizable and the eigenvalues are all non-
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negative and hence there exists an orthonormal basis of eigenvectors v̄1, v̄2, ...,
v̄n corresponding to eigenvalues 0 ≤ λ1 ≤ λ2 ≤ ... ≤ λn.

Proof. Since L is symmetric most of this follows from the Spectral Theorem.
Proving that the eigenvalues are all nonnegative takes a bit more work but is
omitted.

From here on whenever we discuss the eigenvalues and eigenvectors of a Lapla-
cian matrix for a graph we’ll assume that it is an orthonormal basis from above.

Lemma 12.4.8.2. A graph G is connected iff λ2 > 0.

Proof. Omitted. While this is not difficult it takes a bit of time to write down
and the proof is largely unrelated to and doesn’t provide any insight into how
we use it.

Lemma 12.4.8.3. Let G be a graph with n vertices and let L be its Laplacian
matrix. Then we have λ1 = 0 and v̄1 = 1√

n
1̄.

Proof. Since each row of L adds to 0 we have L1̄ = 0̄ and so L1̄ = 01̄ and so 0
is an eigenvalue with eigenvector 1̄ and hence with unit eigenvector 1√

n
1̄.

Lemma 12.4.8.4. Let G be a graph with n vertices and let L be its Lapla-
cian matrix. For any eigenvalue λ > 0 of L the entries in any corresponding
eigenvector v̄ add to 0.

Proof. Let the entries of L be aij . If Av̄ = λv̄ then we have

a11v1 + a12v2 + ...+ a1nvn = λv1

a21v1 + a22v2 + ...+ a2nvn = λv2

... = ...

an1v1 + an2v2 + ...+ annvn = λvn

The sum of this system on the left and right yields:

(a11 + a21 + ...+ an1)v1 + (...)v2 + ...+ (...)vn = λ(v1 + ...+ vn)

Since the columns of L sum to zero the left size is zero and hence v1 + ...+ vn =
0.

Lemma 12.4.8.5. Let G be a graph with n vertices and let L be its Laplacian

matrix. If x̄ satisfies
n∑

i=1

xi = 0 then x̄ =
n∑

i=2

wiv̄i for appropriate wi.
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Proof. We know that since v̄1, v̄2, ..., v̄n forms a basis for Rn that for appropriate
wi we may write:

x̄ =

n∑
i=1

wiv̄i

= w1v̄1 +

n∑
i=2

wiv̄i

= w1
1√
n

1̄ +

n∑
i=2

wiv̄i

Now then we know that x̄ and v̄i (and hence wiv̄i) are all in the subspace of Rn

consisting of vectors whose entries add to 0. Consequently the entries of w1
1√
n

1̄

must all add to 0 because subspaces are closed under linear combinations. But
this implies w1 = 0 as desired.

Lemma 12.4.8.6. Let G be a graph with n vertices and let L be its Laplacian

matrix. If x̄ satisfies
n∑

i=1

xi = 0 then we have

n∑
i=1

x2i =

n∑
i=2

w2
i

Proof. Observe that:

n∑
i=1

x2i = x̄T x̄

=

[
n∑

i=2

wiv̄i

]T [
n∑

i=2

wiv̄i

]

=

[
n∑

i=2

wiv̄
T
i

][
n∑

i=2

wiv̄i

]

=

n∑
i=2

n∑
j=2

wiv̄
T
i wj v̄j

=

n∑
i=2

n∑
j=2

wiwj v̄
T
i v̄j

=

n∑
i=2

w2
i
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Lemma 12.4.8.7. Let G be a graph with n vertices and let E be the set of all
edges of G. For any vector x̄ we have

x̄TAx̄ =
∑

(i,j)∈E

2xixj

Proof. We know that for any x̄ by calculation that

x̄TAx̄ =
∑

1≤i≤n,1≤j≤n

aijxixj

Since aij = 1 iff there is an edge between vertex i and vertex j and 0 otherwise
that:

x̄TAx̄ =
∑

(i,j)∈E

2xixj

Here the 2 appears because each pair i, j appears twice in the original sum but
we’re only counting it once in the set of all edges.

Lemma 12.4.8.8. Let G be a graph with n vertices, let D be its degree matrix,
and let E be the set of all edges of G. For any vector x̄ we have

x̄TDx̄ =
∑

(i,j)∈E

(x2i + x2j )

Proof. Let V be the set of all vertices of G. We know by straightforward calcu-
lation that

x̄TDx̄ =
∑
i∈V

dix
2
i

An alternate way to calculate the degree of any vertex would be to look over
the set of all edges and for each edge contribute +1 to the degree of each of
the two vertices it connects. In order to have the total coefficient of each x2i be
the degree of vertex i this means that when we sum over all edges each edge
between vertices i and j must contribute +x2i + x2j to the total sum.

Thus as desired

x̄TDx̄ =
∑
i∈V

dix
2
i =

∑
(i,j)∈E

(x2i + x2j )
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Lemma 12.4.8.9. Let G be a graph with n vertices, let D be its degree matrix,
let E be the set of all edges of G, and let L be its Laplacian matrix. Then for
any vector x̄ we have

x̄TLx̄ =
∑

(i,j)∈E

(xi − xj)2

Proof. We have:

x̄TLx̄ = x̄T (D −A)x̄

= x̄TDx̄− x̄TAx̄

=
∑

(i,j)∈E

(x2i + x2j )−
∑

(i,j)∈E

2xixj

=
∑

(i,j)∈E

(xi − xj)2

Lemma 12.4.8.10. Let G be a graph with n vertices, let E be the set of all

edges of G, and let L be its Laplacian matrix. If x̄ satisfies
∑
xi = 0 then we

have: ∑
(i,j)∈E

(xi − xj)2 =

n∑
i=2

w2
i λi
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Proof. Observe that:∑
(i,j)∈E

(xi − xj)2 = x̄TLx̄

=

[
n∑

i=2

wiv̄i

]T

L

[
n∑

i=2

wiv̄i

]

=

[
n∑

i=2

wiv̄
T
i

]
L

[
n∑

i=2

wiv̄i

]

=

n∑
i=2

n∑
j=2

wiv̄
T
i Lwj v̄j

=

n∑
i=2

n∑
j=2

wiwj v̄
T
i Lv̄j

=

n∑
i=2

n∑
j=2

wiwj v̄
T
i λj v̄j

=

n∑
i=2

n∑
j=2

wiwjλj v̄
T
i v̄j

=

n∑
i=2

w2
i λi

Theorem 12.4.8.1. The entries in a Fiedler Vector obtain the desired goal.

Proof. The goal is to select x̄ which minimizes
∑

(i,j)∈E
(xi − xj)2 with the condi-

tions that
n∑

i=1

x2i = n. and
n∑

i=1

xi = 0. Accordingly this means we wish to mimize

n∑
i=2

w2
i λi with the conditions that

n∑
i=2

w2
i = n and

n∑
i=1

xi = 0.

Given that λ2 ≤ λ3 ≤ ... ≤ λn, this will be accomplished by setting w2 =
√
n

and w3 = ... = wn = 0.

From here we get x̄ =
√
nv̄2. Since this x̄ is an eigenvector of L̄ corresponding

to λ2 the entries add to 0.

This vector is a Fiedler vector. Of course since v̄2 is simply a multiple of this
which scales the values, we can use v̄2 itself instead.
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12.5 Matlab

Matlab can plot a graph from the adjacency matrix. It does a pretty reasonable
job of arranging the vertices so the graph is comprehensible. First, the following
function m-file will create the adjacency matrix for a graph given a matrix of
edges and a total number of vertices:

function M = createadjacency(v,n)

% Create the Adjacency Matrix for a graph.

% Usage:

% createadjacency([1,2;2,3;1;4],5)

% Will create a graph with 5 vertices

% and edges joining 1-2, 2-3 and 1-4.

M = zeros(n,n);

for i = 1:length(v)

M(v(i,1),v(i,2)) = 1;

M(v(i,2),v(i,1)) = 1;

end

end

In order to plot this graph in Matlab we first create the graph object and then
we plot it. Here’s the example which started the chapter:

>> A = createadjacency([1,3;1,6;3,6;3,2;2,5;5,7;7,4;2,4],7);

>> G = graph(A);

>> plot(G,’LineWidth’,3)

This produces the image where I’ve thickened the lines a bit. There’s currently
no easy way to change the label size in Matlab.
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The following function m-file will create the Laplacian matrix for a graph. It’s
just a slight modification on the one above:

function M = createlaplacian(v,n)

% Create the Laplacian Matrix for a graph.

% Usage:

% createlaplacian([1,2;2,3;1;4],5)

% Will create a graph with 5 vertices

% and edges joining 1-2, 2-3 and 1-4.

M = zeros(n,n);

for i = 1:length(v)

M(v(i,1),v(i,2)) = -1;

M(v(i,2),v(i,1)) = -1;

end

for i = 1:n

M(i,i) = -1*sum(M(:,i));

end

end

Then we can find a Fiedler Vector easily. Here we examine the eigenvalues first,
notice that the Fieder Value has multiplicity one so we can take any multiple of
the corresponding eigenvector, we just look at the eigenvector Matlab gives:
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>> L = createlaplacian([1,3;1,6;3,6;3,2;2,5;5,7;7,4;2,4],7);

>> [p,d] = eig(L);

>> diag(d)

ans =

-0.0000

0.3588

2.0000

2.2763

3.0000

3.5892

4.7757

>> p(:,2)

ans =

0.4801

-0.1471

0.3078

-0.3482

-0.3482

0.4801

-0.4244

To order this vector and attach the index numbers is easy too:

>> L = createlaplacian([1,2;1,10;2,10;2,11;3,7;3,8;3,11;

4,5;4,9;5,6;5,10;6,9;7,8;7,11],11);

>> [p,d] = eig(L);

>> v = p(:,2);

>> sortrows(horzcat(v,[1:size(v)]’))

ans =

-0.3917 9.0000

-0.3626 6.0000

-0.3626 4.0000

-0.2798 5.0000

-0.0726 10.0000

0.0000 1.0000

0.0726 2.0000

0.2798 11.0000

0.3626 7.0000

0.3626 3.0000

0.3917 8.0000

The [1:size(v)] command creates a horizontal vector with entries 1 up to
the length of v. The ’ does the transpose so it’s vertical just like v. The
horzcat command concatenates them horizontally, putting them together. The
sortrows command sorts each row by the first column.
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12.6 Exercises

Exercise 12.1. Consider the following graph:

1

2

3 4

(a) Find the number of walks of length 3 from vertex 1 to vertex 3.

(b) Find the number of walks of length 20 from vertex 2 to vertex 4.

(c) There are no walks of length 3 from vertex 4 to itself. Rather than using
A3, explain intuitively why this is.

Exercise 12.2. Consider the following graph:

1

2

3

4

5

(a) Find the number of walks of length 3 from vertex 1 to vertex 2.

(b) Find the number of walks of length 10 from vertex 2 to vertex 4.

(c) Examine the number of walks of length k from vertex 3 to vertex 5 for
various even k. What do you notice? Give an intutive explanation for this.

(d) Examine the number of walks of length k from vertex 2 to vertex 4 for
various odd k. What do you notice? Give an intutive explanation for this.

Exercise 12.3. A small theorem in the book shows that the number of triangles
in a graph G equals 1

6 tr(A3), where A is the adjacency matrix for G. Why does
this not work for squares, etc.? In other words why does the number of squares
not equal some multiple of tr(A4), why does the number of pentagons not equal
some multiple of tr(A5), and so on?

Exercise 12.4. Consider the following graph:
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1

2

3 4

(a) Intuitively how would you partition the graph into two subgraphs in a rea-
sonable manner?

(b) Apply the Fiedler Method to partition the graph.

(c) Do the results match?

Exercise 12.5. Consider the following graph:

1

2

3

4

5

(a) Intuitively how would you partition the graph into two subgraphs in a rea-
sonable manner?

(b) Apply the Fiedler Method to partition the graph.

(c) Do the results match?

Exercise 12.6. Consider the following graph:

1

2

3

4

5
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(a) Write down the Laplacian matrix for this graph.

(b) This matrix has eigenvalues 0, 1.3820, 2.3820, 3.6180, 4.6180 with corre-
sponding eigenvectors

−0.447
−0.447
−0.447
−0.447
−0.447

 ,

−0.195
−0.632
−0.195

0.512
0.512

 ,


0.372
0

−0.372
−0.602

0.602

 ,


0.512
−0.632

0.512
−0.195
−0.195

 ,


0.602
0

−0.602
0.372
−0.372


Using this, partition the graph with the Fiedler method.

Exercise 12.7. Consider the following graph:

1

2
3

4

5

6

7

8
9

10

11

12

The Fiedler vector is:

[0.37, 0.23,−0.12,−0.34,−0.28,−0.04,−0.03, 0.42,−0.36,−0.34, 0.42, 0.06]
T

Use this vector to partition the graph into three components and then use this
to draw a more understandable picture of the graph.
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Exercise 12.8. Without doing any calculation match the following graphs with
their Fiedler Vectors. Explain your decision.

G1 shown here:

1

2

3 4

5

6

G2 shown here:

1 2 3 4 5 6

G3 shown here:

1

2

3

4

5

6

with:

v̄ =


−0.56
−0.41
−0.15

0.15
0.41
0.56

 and w̄ =


0.46
0.46
0.26
−0.26
−0.46
−0.46

 and x̄ =


0.32
0.51
0.32
−0.12
−0.51
−0.51
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Exercise 12.9. Consider the following graph:

1

2

3

4

5

6

7

8

(a) Use the Fiedler Method to partition the graph.

(b) Draw and label the separated components neatly and individually and then
indicate with dashed lines the edges that go between them.

(c) From the previous step are there any insights you gain about the structure
of the graph?

Exercise 12.10. Consider the following graph:

1

2

3

4

5

6

7

8

(a) Use the Fiedler Method to partition the graph.
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(b) Draw and label the separated components neatly and individually and then
indicate with dashed lines the edges that go between them.

(c) From the previous step are there any insights you gain about the structure
of the graph?

Exercise 12.11. Consider the following graph:

1

2

3

4

5

(a) Write down the Laplacian Matrix for the graph.

(b) The Fiedler Vectors span a two-dimensional subspace. Analyze all possible
partitions which result. Be methodical.

Exercise 12.12. Consider the following graph:

12

3

4 5

6

(a) The Fiedler Value has a two-dimensional corresponding eigenspace. Find a
basis {v̄1, v̄2} for the set of all Fiedler Vectors

(b) Any nonzeo linear combination of v̄1 and v̄2 will give a reasonable partition
using the Fiedler Method. Experiment to see how many different partitions
you can find.
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(c) Suppose v̄ = c1v̄1 + c2v̄2 for constants c1, c2. Assuming neither of the 1-
entry and 4-entry of v are 0 explain why vertices 1 and 4 will be in different
subgraphs. Repeat for the 2-entry and 5-entry and for the 3-entry and
6-entry.

Exercise 12.13. Let Ln be the Laplacian Matrix for the complete graph Kn

(the graph with n vertices with edges between all pairs). By testing various
values of n make an educated guess about the eigenvalues of Ln for any n.
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Exercise 12.14. Consider the following graph:

1

2
3

4

5

6

7

8
9

10

11

(a) Find a Fielder vector.

(b) The values in this Fiedler Vector, when sorted, can be grouped into three
separated subsets. Do so.

(c) Use this grouping to partition the graph into three subgraphs.

(d) Draw and label the separated components neatly and individually and then
indicate with dashed lines the edges that go between them.

(e) From the previous step are there any insights you gain about the structure
of the graph?

Exercise 12.15. Consider the graph with n vertices:

1 2 n

(a) Before doing any calculation what do you think the outcome of the Fiedler
Method might be? You may need cases. Justify informally.

(b) Check your hypothesis with a few values of n.
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Exercise 12.16. Consider the following graph:

1

2

34

5

6

7

8

9

10 11

12

13

14

(a) Find a Fiedler vector.

(b) Separate the values into three groups.

(c) Use these groups to partition the graph into three subgraphs.

(d) Draw and label the separated components neatly and individually and then
indicate with dashed lines the edges that go between them.

(e) Which vertex seems like the most critical and why?

(f) From the previous step are there any insights you gain about the structure
of the graph?
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Exercise 12.17. Suppose the following graph shows all of the people in a small
part of a social network. An edge connecting two people indicates that they are
friends.

1

2

34

5

6

7

8

9 10

11

12

13

(a) Use the Fiedler Method to identify the group which is most strongly con-
nected to Person 10.

(b) Why is this method ineffective in terms of providing a reasonable answer
to (a)? Hint: Is anyone missing from your answer to (a) that is probably
important to Person 10?

Exercise 12.18. Suppose a small LAN (local area network) consists of ten
computers connected as follows:

• C1 is connected to C8, C9, C10

• C2 is connected to C5, C6.

• C3 is connected to C4, C9.

• C4 is connected to C3, C9.

• C5 is connected to C2, C7.

• C6 is connected to C2, C7, C8.

• C7 is connected to C5, C6.

• C8 is connected to C1, C6, C10.

• C9 is connected to C1, C3, C4.

• C10 is connected to C1, C8.
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(a) Write down the Laplacian Matrix for this graph. You don’t need to draw
the graph!

(b) Find the Fiedler Vector and re-order the entries in increasing order.

(c) Partition the graph into some obvious number of subgraphs.

(d) Draw each of the subgraphs neatly and then use dashed lines to represent
the edges that go between them.

(e) From the previous step are there any insights you gain about the structure
of the graph?

Exercise 12.19. Suppose a small LAN (local area network) consists of ten
computers connected as follows:

• C1 is connected to C6.

• C2 is connected to C3, C7, C8 and C9.

• C3 is connected to C2, C4 and C7.

• C4 is connected to C3, C5, C6 and C7.

• C5 is connected to C4 and C6.

• C6 is connected to C1, C4 and C5.

• C7 is connected to C2, C3, C4 and C9.

• C8 is connected to C2, C9 and C10.

• C9 is connected to C2, C7 and C8.

• C10 is connected to C8.

(a) If a network technician wishes to divided these into two groups in order
to connect two backup power supplies how should this be done using the
Fiedler Method?

(b) If we define the most important links as those that would be removed using
the Fiedler Method what are the most important links in this network?
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Exercise 12.20. The following is a simplified map of some countries. What
we’d like to do is divide the countries into two subsets in a way that tries to
balance the number of countries in each subset while minimizing the number of
border crossings between subsets.

(a) Create a graph from this map by assigning a vertex for each country and
connecting two vertices by an edge if the two countries share a border.

(b) Use the Fiedler Method to partition the graph.

(c) Explain in terms of the map what the Fiedler Method has attempted to do.

(d) Shade one subset of the countries in accordance with the result.

Exercise 12.21. The following is a simplified map of some countries. What
we’d like to do is divide the countries into two subsets in a way that tries to
balance the number of countries in each subset while minimizing the number of
border crossings between subsets.

(a) Create a graph from this map by assigning a vertex for each country and
connecting two vertices by an edge if the two countries share a border.

(b) Use the Fiedler Method to partition the graph.
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(c) Explain in terms of the map what the Fiedler Method has attempted to do.

(d) Shade one subset of the countries in accordance with the result.

Exercise 12.22. A class of ten students needs to be split up. The goal is
to get two groups of size as close as possible while minimizing the number of
friendships that must be broken up. If the friendships are given in the following
table use the Fiedler method to split up the class. How many friendships must
be broken up? Draw the two resulting friend networks and indicate with dotted
lines where the broken friendships are.

A
u

st
in

B
et

h

C
h

ar
li

e

D
an

a

E
ri

k

F
io

n
a

G
re

g

H
el

en

Ia
n

J
u

st
in

Austin X X X
Beth X X X
Charlie X X X X
Dana X X X
Erik X X X X X
Fiona X X
Greg X X
Helen X X X X
Ian X X X X
Justin X X X X

Exercise 12.23. Pick an area of the world which is geographically divided into
at least ten areas. These could be countries, states, counties, anything. Use the
Fiedler Method to partition the area. Show the graph, relevant calculations,
and a resulting map with the regions colored in two separate colors.

Exercise 12.24. The Fiedler method attempts to do two things with regards
to the way it partitions the graph. What are those two things?

Exercise 12.25. What is happening when the Fiedler value turns out to have
two or more linearly independent vectors associated to it? Give an example of
a graph for which you believe that this would be the case and provide a basic
and intutive explanation of why you believe this would be the case.
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