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6.1 Introduction

Markov chains have many applications but we’ll start with one which is easy to
understand.

6.1.1 The Problem

Suppose there are two states (think countries, or US states, or cities, or what-
ever) 1 and 2 with a total population of 1 distributed as 0.7 in State 1 and 0.3
in State 2.

Suppose that at the end of the year 10% of the people in State 1 move out of
State 1 and into State 2 (the rest remain) and 5% of the people in State 2 move
out of State 2 and into State 1 (the rest remain).

What will the new population distribution be? We can find this out easily:

State 1 now has 0.7− 0.10(0.7) + 0.05(0.3) = 0.6450

State 2 now has 0.3− 0.05(0.3) + 0.10(0.7) = 0.3550

There’s another way to write this, however. If we rephrase this as 90% of the
people in State 1 stay in State 1 and 5% of the people in State 2 move to State
1, and similarly for State 2 then we get:

State 1 now has 0.90(0.7) + 0.05(0.3) = 0.6450

State 2 now has 0.10(0.7) + 0.95(0.3) = 0.3550

Now then, suppose this happened again the next year. Again, this is easy to
find out:

State 1 now has 0.90(0.6450) + 0.05(0.3550) = 0.5983

State 2 now has 0.10(0.6450) + 0.95(0.3550) = 0.4017

Suppose this keeps happening year-by-year for years. This calculation would
not only be annoying to repeat but perhaps it’s possible to gain some insight
without doing it over and over.

6.1.2 The Problem Rephrased with Matrices and Vectors

For starters let’s notice that we can convert the calculations very easily to linear
algebra. If the populations start with the vector:

[
0.7
0.3

]
Then after one year the new populations are:
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[
0.90 0.05
0.10 0.95

] [
0.7
0.3

]
=

[
0.90(0.7) + 0.05(0.3)
0.10(0.7) + 0.95(0.3)

]
=

[
0.6450
0.3550

]
In other words if the population is x̄0 then after one year the population is:

x̄1 = T x̄0

Where

T =

[
0.90 0.05
0.10 0.95

]
Furthermore after another year the population is:

x̄2 = T x̄1 = T (T x̄0) = T 2x̄0

and in general after n years:

x̄n = Tnx̄0

6.1.3 Higher Dimensions

The first nice thing to notice about moving to matrices and vectors is that the
problem generalizes easily to higher dimensions.

First let’s make one thing clear that it’s easy to mess up. In the matrix T
(called the transition matrix) column j contains the information about where
the population in state j goes to. You could think of as an “exit vector” from
state j. More specifically the (i, j) row (ith entry in the jth column) contains the
proportion of people who moved from state j to state i in exactly one iteration.

So then when we move to more states we simply add rows and columns as
needed for the number of states we have.

Example 6.1. Consider the following diagram which shows the populations
shifting between three states:
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1

2 3

0.90

0.06

0.04

0.80

0.10

0.10

0.70

0.20

0.10

Let’s determine the steady state of this situation in terms of how the populations
will distribute in the long term.

The transition matrix is:

T =

 0.90 0.10 0.20
0.06 0.80 0.10
0.04 0.10 0.70


So now for a given initial population distribution we can find out the distribution
after one, two and five iterations easily: If

x̄0 =

 0.1
0.2
0.7


then

T x̄0 ≈

 0.2500
0.2360
0.5140


T 2x̄0 ≈

 0.3514
0.2552
0.3934


T 5x̄0 ≈

 0.5007
0.2692
0.2302


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6.1.4 Long Term Behavior Experiment

So what happens in the long term? Let’s take a look as n gets large for our
original distribution:

x̄0 =

[
0.7
0.3

]
T x̄0 =

[
0.6450
0.3550

]
T 2x̄0 =

[
0.5983
0.4017

]
T 10x̄0 ≈

[
0.4055
0.5945

]
T 100x̄0 ≈

[
0.3333
0.6667

]
T 1000x̄0 ≈

[
0.3333
0.6667

]
Oh, that’s interesting. It looks like the population settles whereby 1/3 is in
State 1 and 2/3 is in State 2. Moreover it really suggests two things:

• lim
n→∞

Tnx̄0 =

[
1/3
2/3

]
for this particular x̄0.

• T

[
1/3
2/3

]
=

[
1/3
2/3

]
The second of these is true, and it’s easy to check.

As for the first, we might ask a preliminary question: What if we’d started with
a very different distribution of people? Let’s try with 0.05 and 0.95 in State 1
and State 2 respectively!

x̄0 =

[
0.05
0.95

]
T x̄0 =

[
0.0925
0.9075

]
T 10x̄0 =

[
0.2776
0.7224

]
T 100x̄0 ≈

[
0.3333
0.6667

]
T 1000x̄0 ≈

[
0.3333
0.6667

]
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Oh wow! Could it be that the population always approaches this same distri-
bution?

6.2 Steady States and Limits

6.2.1 Formal Stuff

It appears (no proof yet!) in our simple example that there is a vector which is
fixed by T and to which perhaps all other states approach as n→∞. However
is this always the case?

Let’s lay everything out formally:

Definition 6.2.1.1. A probability vector is a vector whose entries lie between
0 and 1 (inclusive) and add to 1. An example would be a distribution of the
population.

Definition 6.2.1.2. A transition matrix (also known as a stochastic matrix )
or Markov matrix is a matrix in which each column is a probability vector. An
example would be the matrix representing how the populations shift year-to-
year where the (i, j) entry contains the fraction of people who move from state
j to state i in one iteration.

Definition 6.2.1.3. A probability vector x̄ is a steady-state vector for a tran-
sition matrix T if T x̄ = x̄. Notice that a steady-state vector is an eigenvector
corresponding to the eigenvalue λ = 1.

Definition 6.2.1.4. A regular transition matrix is a transition matrix T such
that there is some integer k ≥ 1 such that all entries of T k are nonzero. For
the simplest case if all the entries of T itself are nonzero then T is a regular
transition matrix.

Theorem 6.2.1.1. If T is a regular transition matrix then it has λ = 1 as an
eigenvalue and there is a unique steady-state eigenvector x̄∗. Moreover for any
probability vector x̄0, lim

k→∞
T kx̄0 = x̄∗.

Proof. This proof is hard and is omitted. Later in the chapter there is a proof
for the 2× 2 case.

Corollary 6.2.1.1. If T is a regular transition matrix then lim
k→∞

T k exists,

where the columns of the result are all identical and all equal x̄∗.
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Proof. Suppose T is n × n, then we know from the theorem that for each 1 ≤
i ≤ n we have

lim
k→∞

T kēi = x̄∗

so that

lim
k→∞

T k [ē1 . . . ēn] = [x̄∗ . . . x̄∗]

lim
k→∞

T kI = [x̄∗ . . . x̄∗]

which gives the result.

It follows from the corrollary that computationally speaking if we want to ap-
proximate the steady state vector for a regular transition matrix T that all we
need to do is look at one column from T k for some very large k.

Fact 6.2.1.1. If T is a transition matrix but is not regular then there is no
guarantee that the results of the Theorem will hold! They might, but no guar-
antee.

Fact 6.2.1.2. A transition matrix which is not regular may have more than
one steady state vector and there are no guarantees about limiting behavior.

Fact 6.2.1.3. If you use Matlab or Wolfram Alpha to find this eigenvector
be aware that it will almost certainly not give you a probability vector. For
example Matlab typically gives a unit vector. However since any multiple of an
eigenvector is an eigenvector you can simply divide by the sum of the values to
get an eigenvector which is a probability vector.

6.2.2 Full Theory Example

Example 6.2. Consider the example from earlier with transition matrix

T =

 0.90 0.10 0.20
0.06 0.80 0.10
0.04 0.10 0.70


Notice that T is regular because all entries of T 1 are nonzero.

Now then, the eigenvalues of this matrix are λ1 = 1, λ2 ≈ 0.763246, λ3 ≈
0.636754.

Note that in reality we don’t need these - we know (from the theorem) that λ = 1
is an eigenvalue and so all we really need is the associated steady-state vector,
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meaning an eigenvector which is a probability vector, meaning the entries add
to 1.

Matlab tells us an eigenvector for λ1 = 1 is approximately: 0.886659
0.39013

0.248264


This is not a probability vector, in fact this is a vector whose magnitude is 1
but the sum of the entries is not. So to make it a probability vector we divide
through by the sum (because any nonzero multiple of an eigenvector is also an
eigenvector) to get:

 0.581397
0.255815
0.162791


Which means that in the long term:

• 58.1397% of the population will end up in 1.

• 25.5815% of the population will end up in 2.

• 16.2791% of the population will end up in 3.

As per the corollary we could also have found these approximately by taking a
sufficiently large value of T and looking at a column:

T 1000 ≈

 0.581395 0.581395 0.581395
0.255814 0.255814 0.255814
0.162791 0.162791 0.162791



6.3 Transition Matrices and Regularity

The definition of T being regular is that there is some power T k for which none
of the entries are zero. What does this actually mean, though, and what does
it mean for T to be non-regular?

We can answer this by investigating the meaning of the entries in T 2, T 3, etc.

Let’s look at T 2. If we write:

T =


t11 t12 · · · t1n
t21 t22 · · · t2n

...
...

. . .
...

tn1 tn2 · · · tnn


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First we know that the (i, j) entry in T represents the proportion of people who
move from state j to state i in one interation.

The (i, j)-entry in T 2 equals:

ti1t1j + ti2t2j + ...+ tintnj

But what does this value represent?

Well notice that:

• ti1t1j represents the proportion of people who move from state j to state
1 and then from state 1 to state i.

• ti2t2i represents the proportion of people who move from state j to state
2 and then from state 2 to state i.

• ...until...

• tintnj represents the proportion of people who move from state j to state
n and then from state n to state i.

It follows that the (i, j)-entry in T 2 represents the proportion of people who
move from state j to state i in exactly two iterations.

Similarly the (i, j)-entry in T 3 represents the proportion of people who move
from state j to state i in exactly three iterations and in general the (i, j)-entry
in T k represents the proportion of people who move from state j to state i in
exactly k iterations.

What this means is that for a transition matrix to be regular that there is some
iterative step (the k value) for which it can be said that in exactly k iterations
some people move from every state to every other state. Note that this is not
the same as saying that the population reaches every state from each state

eventually. For example if T =

[
0 1
1 0

]
then everyone alternates states but

the matrix is not regular.

However we can certainly say that if some states are not reachable from others
(ever) then the transition matrix will definitely not be regular since if state i is
not reachable from j (ever) then the (i, j) entry of T k will be zero for all k.

Here some examples to flesh out these ideas:

Example 6.3. Consider:
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1 2

3

0.90

0.10

0.80

0.15

0.05

0.98

0.02

The transition matrix for this is:

T =

 0.9 0 0.15
0 0.98 0.05

0.1 0.02 0.8


Observe the following two:

T 2 =

 0.825 0.003 0.255
0.005 0.9614 0.089
0.17 0.0356 0.656

 and T 5 =

 0.6894 0.02171 0.4117
0.03618 0.9118 0.1662
0.2744 0.06646 0.4222


Some things we can observe:

• The matrix is regular because T 2 has no zeros.

• The (3, 2) entry in T 2 is 0.0356 and indicates that in exactly two iterations
0.0356 of the population of state 2 will have moved to state 3.

• The (3, 1) entry in T 5 is 0.2744 and indicates that in exactly five iterations
0.2744 of the population of state 1 will have moved to state 3.

• The (2, 1) entry in T is 0 since we can’t get from state 1 to state 2 in
exactly one iteration but the (2, 1) entry in T 2 is 0.005 since we can do it
in exactly two iterations.

Example 6.4. Consider:
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1 2

3

4

5

0.90

0.10

0.80

0.15

0.05

0.97

0.02

0.01

0.70

0.30

0.75

0.25

Some things we can observe:

• This matrix is not regular because it is impossible to ever get from states
4,5 to states 1,2,3. Consequently the (i, j) entries of T k will be zero for
i = 1, 2, 3 and j = 4, 5 for all k.

• It’s certainly not possible to get from state 1 to state 5 in one itera-
tion but it is possible in four. Consequently the (5, 1) entry in T would
be zero but the (5, 1) entry in T 4 would not be. It would in fact be
(0.10)(0.05)(0.01)(0.30) = 0.000015.

• To directly calculate the (3, 1) entry in T 3 we look at the paths from state
1 to state 3 which are three iterations long. There are five:

1→ 3→ 1→ 3
1→ 3→ 2→ 3
1→ 3→ 3→ 3
1→ 1→ 1→ 3
1→ 1→ 3→ 3

Consequently the (3, 1) entry in T 3 equals:

(0.10)(0.15)(0.10)
+(0.10)(0.05)(0.02)
+(0.10)(0.80)(0.80)
+(0.90)(0.90)(0.10)
+(0.90)(0.10)(0.80)

= 0.2186

Interestingly if we write down the transition matrix for this:
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T =


0.9 0 0.15 0 0

0 0.97 0.05 0 0
0.1 0.02 0.8 0 0

0 0.01 0 0.7 0.25
0 0 0 0.3 0.75


and if we find T kx̄0 for any x̄0 and for some very large k (emulating a limit):

T kx̄0 =


0
0
0

0.455
0.545


So this shows (experimentally) that there is a steady-state vector to which all
other states converge.

What is happening here is that in the long term everything moves out of states

1,2,3 and into 4,5 which act like their own little Markov chain and

[
0.455
0.545

]
is

the steady state for this chain.

Example 6.5. Consider the simple example with 1 and 2 where, each year,
100% of the population moves to the other state.

The transition matrix here is:

T =

[
0 1
1 0

]
which has T 2 = I, T 3 = T , etc. and is hence not regular.

Moreover any initial population will flip year by year.

If the initial population distribution is

[
0.7
0.3

]
then the following year it will

be

[
0.3
0.7

]
and then

[
0.7
0.3

]
and so on, and this will happen (this flip) for

any distribution it starts with. Basically this distribution never settles unless it

begins (and stays with)

[
0.5
0.5

]
So there is a single steady-state vector, specifically

[
0.5
0.5

]
, but no other state

will converge to it.
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6.4 Steady State Proof for The Two-Dimensional
Case

Theorem 6.4.0.1. If T is a 2×2 regular transition matrix then T has a steady-
state vector x̄∗ and moreover for any vector x̄0 we have lim

n→∞
Tnx̄0 = x̄∗.

Proof. A 2× 2 matrix whose columns add to 1 has the form

T =

[
a 1− b

1− a b

]
where 0 ≤ a ≤ 1 and 0 ≤ b ≤ 1.

Notice first that if a = b = 1 then

T =

[
1 0
0 1

]
and if a = b = 0 then

T =

[
0 1
1 0

]
and neither of these are regular so we can safely ignore these cases.

Calculation shows that the eigenvalue-eigenvector pairs of T are:{
1,

[
b− 1
a− 1

]}
and

{
a+ b− 1,

[
−1

1

]}
Notice that λ = 1 is an eigenvalue with eigenvector

[
b− 1
a− 1

]
If we divide through by the sum (a − 1) + (b − 1) (which is not zero because
we’ve excluded a = b = 1) we get the probability eigenvector:

[
b−1

(a−1)+(b−1)
a−1

(a−1)+(b−1)

]

We can see here that the sum is now 1 and each value is between 0 and 1, so
we have a steady-state vector which we’ll denote x̄∗.
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Next we need to show that for any probability vector x̄0 we have the long-term
behavior lim

n→∞
Tnx̄0 = x̄∗.

First, it follows from our eigenpairs that the diagonalization of T is:

T =

[
b− 1 −1
a− 1 1

] [
1 0
0 a+ b− 1

] [
b− 1 −1
a− 1 1

]−1

and therefore:

lim
n→∞

Tn = lim
n→∞

[
b− 1 −1
a− 1 1

] [
1 0
0 a+ b− 1

]n [
b− 1 −1
a− 1 1

]−1
=

[
b− 1 −1
a− 1 1

]
lim

n→∞

[
1 0
0 (a+ b− 1)n

] [
b− 1 −1
a− 1 1

]−1
=

[
b− 1 −1
a− 1 1

] [
1 0
0 0

] [
b− 1 −1
a− 1 1

]−1
=

[
b−1

a+b−2
b−1

a+b−2
a−1

a+b−2
a−1

a+b−2

]

Notice that
lim
n→∞

(a+ b− 1)n = 0

because −1 < a+ b− 1 < 1 (because we’ve excluded a = b = 0 and a = b = 1).

Now then if x̄0 is any probability vector then if we write:

x̄0 =

[
c

1− c

]
with 0 ≤ c ≤ 1 then calculation shows that:

lim
n→∞

Tnx̄0 =

[
b−1

a+b−2
b−1

a+b−2
a−1

a+b−2
a−1

a+b−2

] [
c

1− c

]
=

[
b−1

a+b−2
a−1

a+b−2

]
= x̄∗

as desired.
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6.5 Matlab

We addressed earlier how we can find the eigenvalues and eigenvectors of a
matrix but it’s worth revisiting, especially since we need to get a vector which
sums to 1.

Here’s an example from earlier.

>> T = [

0.90 0.10 0.20

0.06 0.80 0.10

0.04 0.10 0.70];

We can find all the eigenpairs as before:

>> [p,d] = eig(T)

p =

0.8867 0.8071 -0.4960

0.3901 -0.5105 -0.3137

0.2483 -0.2966 0.8097

d =

1.0000 0 0

0 0.7632 0

0 0 0.6368

What we’d like to do is take the first column of p, which is the eigenvector
corresponding to λ = 1, the first entry in the diagonal matrix d, and divide by
its magnitude. Here is how we can do it in one go:

>> v = p(:,1)/sum(p(:,1))

v =

0.5814

0.2558

0.1628

This notation might be familiar. Writing p(:,1) takes every row in the first
column of p. So what we’re doing is taking that vector and dividing it by its
own sum.

6.6 Exercises

Exercise 6.1. Consider the following population movement diagram.
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1

2 3

0.80

0.12

0.08

0.90

0.05

0.05

0.75
0.25

(a) Write down the corresponding transition matrix T .

(b) What does the fact that T is not symmetric say about the population move-
ments?

(c) If the population distribution starts at x̄0 =

0.6
0.2
0.2

 what will it be after one

iteration? How about after two iterations?

(d) Calculate the steady state distribution x̄∗.

(e) Using software (your choice) find the smallest value of k such that T kx̄0
agrees with x̄∗ to four decimal places.

Exercise 6.2. Given the transition matrix:

T =


0.9 0 0.05 0 0.15 0.05

0 0.8 0.05 0.2 0.05 0.05
0.01 0.1 0.5 0 0 0.05
0.02 0.1 0.1 0.75 0 0.05
0.07 0 0.1 0 0.7 0.05

0 0 0.2 0.05 0.1 0.75


(a) Draw the corresponding population movement diagram.

(b) Is this matrix regular? Justify.

Exercise 6.3. Draw a population movement diagram whose transition matrix
is 3× 3, regular and symmetric. Also give the transition matrix.

Exercise 6.4. Given the following population movement diagram:
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1

2

3

4

5

6

0.80

0.05

0.15

0.75

0.10

0.15

0.70

0.20

0.10

0.85

0.15

0.90

0.05
0.05

0.95

0.05

(a) Write down the transition matrix T for this.

(b) Find each of the following without actually taking powers of T :

(a) The (3, 2) entry of T .

(b) The (3, 2) entry of T 2.

(c) The (1, 3) entry of T 2. Be careful!

(d) The smallest k such that the (5, 3) entry of T k is nonzeo and what that
value is.

(e) All (i, j) such that the (i, j) entry of T k is zero for all k.

(f) Explain intuitively what will happen in the long term to any initial pop-
ulation distribution. Justify intuitively. This question can be answered
to various degrees of detail, the most basic being - in which area(s) do
the populations tend to eventually move and why?

Exercise 6.5. Find a population movement diagram and the corresponding
transition matrix T such that T 7 = I but T k 6= I for k < 7.

Exercise 6.6. We know that a regular transition matrix has a steady state
to which all states converge and that a nonregular transition matrix does not
necessarily have to. Give an example of a population movement diagram and
the corresponding transition matrix T which is 5× 5 and nonregular but which
does have a steady state to which all states converge and find this steady state.

Exercise 6.7. Consider the following population movement diagram:
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1

2 3

0.70

0.28

0.02

0.85

0.05

0.10

0.95
0.02

0.03

(a) Write down the corresponding transition matrix T .

(b) If the population distribution starts at x̄0 =

0.1
0

0.9

 what will it be after one

iteration? How about after two iterations? How about after five iterations?

(c) Find the steady state distribution x̄∗.

(d) Find the smallest value of k such that T kx̄0 agrees with x̄∗ to four decimal
places.

Exercise 6.8. Find all eigenvalues of the following transition matrix:

T =

 a 0 1− c
1− a b 0

0 1− b c



Exercise 6.9. It seems like T kx̄0 gets very close to x̄∗ very quickly but this
doesn’t have to be the case. Find an example of a 2×2 regular transition matrix
and an initial state x̄0 such that all of the entries in x̄1000 = T 1000x̄0 still differ
from those in x̄∗ at the first decimal place.

Exercise 6.10. Give an example of a transition matrix whose corresponding
population movement diagram is separated into two non-connected components.

Exercise 6.11. Give an example of a transition matrix whose corresponding
population movement diagram is separated into two non-connected components,
one of which has a steady-state to which all states converge and one of which
does not.
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Exercise 6.12. Define the following terms: Probability vector, transition ma-
trix, regular transition matrix.

Exercise 6.13. For any given n is it possible to construct a transition matrix
T such that some entry in T k is 0 for k = 1, ..., n− 1 but that entry is nonzero
in Tn? Explain why or why not.

Exercise 6.14. Consider:

1 2α

1− α

β

1− β

(a) Write down the corresponding transition matrix T .

(b) Assuming that 0 < α < 1 and 0 < β < 1, find the limiting steady state
vector for T .

(c) If remove the above restrictions on α and β does T have to have a limiting
steady state vector? If it does not have to, can it? Justify.

Exercise 6.15. Suppose that T is regular and so T k has all nonzero entries for
some k. Explain why T j has all nonzero entries for j > k.
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