1. State the following three definitions:
(a) Define what it means for $\left\{x_{n}\right\} \rightarrow x_{0}$.

Solution: $\forall \epsilon>0, \exists N \in \mathbb{N}, \forall n \geq N,\left|x_{n}-x_{0}\right|<\epsilon$
(b) Define what it means for a set $S \subseteq \mathbb{R}$ to be closed.

Solution: Every convergent sequence in S converges to something in S.
(c) Define what it means for a function $f: D \rightarrow \mathbb{R}$ to be uniformly continuous.

Solution: If $\left\{u_{n}\right\}$ and $\left\{v_{n}\right\}$ are in D and $\left\{u_{n}-v_{n}\right\} \rightarrow 0$ then $\left\{f\left(u_{n}\right)-f\left(v_{n}\right)\right\} \rightarrow 0$.
2. State the Intermediate Value Theorem. Pick one hypothesis, remove it, and give a counterexample showing the new statement is false.
Solution: If $f:[a, b] \rightarrow \mathbb{R}$ is continuous and c is strictly between $f(a)$ and $f(b)$ then there exists some $x_{0} \in(a, b)$ with $f\left(x_{0}\right)=c$.
One option: If the continuity hypothesis is removed then $f:[0,1] \rightarrow \mathbb{R}$ defined by $f(x)=0$ for $x \in[0,1)$ and $f(1)=1$ is a counterexample with $c=0.5$.
3. The following is true for any convergent sequence $\left\{x_{n}\right\} \rightarrow x_{0}$:

$$
\text { If } x_{0}>0 \text { then } \exists N \in \mathbb{N}, \forall n \geq N, x_{n}>0
$$

State the converse and give a counterexample showing that the converse is false.
Solution: The converse is

$$
\text { If } \exists N \in \mathbb{N}, \forall n \geq N, x_{n}>0 \text { then } x_{0}>0
$$

A counter example is $\{1 / n\}$ for which all terms are all greater than 0 and yet it converges to 0 .
4. Prove using $\epsilon-N$ that:

$$
\left\{2-\frac{1}{n}+\frac{3}{n^{2}}\right\} \rightarrow 2
$$

Solution: For scratch we want to choose N so $n \geq N$ implies

$$
\left|2-\frac{1}{n}+\frac{3}{n^{2}}-2\right|<\epsilon
$$

Observe that

$$
\left|2-\frac{1}{n}+\frac{3}{n^{2}}-2\right|=\left|-\frac{1}{n}+\frac{3}{n^{2}}\right| \leq\left|-\frac{1}{n}\right|+\left|\frac{3}{n^{2}}\right|=\frac{1}{n}+\frac{3}{n^{2}} \leq \frac{1}{n}+\frac{3}{n}=\frac{4}{n}
$$

so if $\frac{4}{n}<\epsilon$ or $n>\frac{\epsilon}{4}$ we are safe.
To be formal let ϵ be given and choose $N>\frac{\epsilon}{4}$. Then if $n \geq N$ then $n>\frac{\epsilon}{4}$ and so $\frac{4}{n}<\epsilon$ and then

$$
\left|2-\frac{1}{n}+\frac{3}{n^{2}}-2\right|=\left|-\frac{1}{n}+\frac{3}{n^{2}}\right| \leq\left|-\frac{1}{n}\right|+\left|\frac{3}{n^{2}}\right|=\frac{1}{n}+\frac{3}{n^{2}} \leq \frac{1}{n}+\frac{3}{n}=\frac{4}{n}<\epsilon
$$

as desired.
5. Consider $f: \mathbb{R} \rightarrow \mathbb{R}$ defined by

$$
f(x)= \begin{cases}2 x & \text { if } x \leq 5 \\ 0 & \text { if } x>5\end{cases}
$$

Prove using the sequence definition of continuity that $f(x)$ is continuous at $x=3$.
Solution: Suppose $\left\{x_{n}\right\} \rightarrow 3$. Choose N so that if $n \geq N$ then $\left|x_{n}-3\right|<2$. Then $x_{n}<5$ and so $\left\{f\left(x_{n}\right)\right\}=\left\{2 x_{n}\right\} \rightarrow 2(3)=6=f(3)$.
6. Suppose $f: \mathbb{R} \rightarrow \mathbb{R}$ is continuous and $x_{0} \in \mathbb{R}$ with $f\left(x_{0}\right)>0$. Show that there exists some $\alpha>0$ such that $f(x)>0$ for all $x \in\left(x_{0}-\alpha, x_{0}+\alpha\right)$
Solution: By the $\epsilon-\delta$ criterion with $\delta=f\left(x_{0}\right) / 2$ we can choose $\epsilon>0$ so that if $\left|x-x_{0}\right|<\epsilon$ then $\left|f(x)-f\left(x_{0}\right)\right|<f\left(x_{0}\right) / 2$. Let $\alpha=\epsilon$ and then if $\left|x-x_{0}\right|<\alpha$ then $\left|f(x)-f\left(x_{0}\right)\right|<f\left(x_{0}\right) / 2$ which implies that $-f\left(x_{0}\right) / 2<f(x)-f\left(x_{0}\right)<f\left(x_{0}\right) / 2$ which implies that $f(x)>f\left(x_{0}\right) / 2>0$ as desired.
7. Suppose D is sequentially compact and $f: D \rightarrow \mathbb{R}$ is continuous. Prove that $f(D)$ is sequentially compact.
Solution: Suppose $\left\{y_{n}\right\}$ is a sequence in $f(D)$. We claim there is a subsequence converging to something in $f(D)$. Well for all n we have some $x_{n} \in D$ with $f\left(x_{n}\right)=y_{n}$. Then $\left\{x_{n}\right\}$ is a sequence in D which by sequential compactness has a subsequence $\left\{x_{n_{k}}\right\} \rightarrow x_{0} \in D$. Then by continuity $\left\{f\left(x_{n_{k}}\right)\right\} \rightarrow f\left(x_{0}\right) \in f(D)$. Let $y_{0}=f\left(x_{0}\right)$ and so $\left\{f\left(x_{n_{k}}\right)\right\}=\left\{y_{n_{k}}\right\}$ is a subsequence of $\left\{y_{n}\right\}$ which converges to $f\left(x_{0}\right)=y_{0} \in f(D)$.
8. Suppose $\left\{x_{n}\right\}$ is a bounded sequence which has the property that for all $n \in \mathbb{N}$ there is some $n_{1}>n$ with $x_{n_{1}}>x_{n}$ and some $n_{2}>n$ with $x_{n_{2}}<x_{n}$. Prove that $\left\{x_{n}\right\}$ does not converge.
Solution: By way of contradiction suppose $\left\{x_{n}\right\} \rightarrow x_{0}$. The hypothesis allows us to construct a monotone increasing subsequence of x_{n} and a monotone decreasing subsequence of x_{n} which, since they are bounded, must converge by the MCT to the inf and sup of the set of sequence values. But they must also conver to x_{0} which means this inf and sup must both equal x_{0} so that the sequence must be constant which contradicts the hypotheses.

