- 1. State the following three definitions:
 - (a) Define what it means for $\{x_n\} \to x_0$. Solution: $\forall \epsilon > 0, \exists N \in \mathbb{N}, \forall n \ge N, |x_n - x_0| < \epsilon$
 - (b) Define what it means for a set $S \subseteq \mathbb{R}$ to be closed. Solution: Every convergent sequence in S converges to something in S.
 - (c) Define what it means for a function $f: D \to \mathbb{R}$ to be uniformly continuous. Solution: If $\{u_n\}$ and $\{v_n\}$ are in D and $\{u_n - v_n\} \to 0$ then $\{f(u_n) - f(v_n)\} \to 0$.
- 2. State the Intermediate Value Theorem. Pick one hypothesis, remove it, and give a counterexample showing the new statement is false.

Solution: If $f : [a, b] \to \mathbb{R}$ is continuous and c is strictly between f(a) and f(b) then there exists some $x_0 \in (a, b)$ with $f(x_0) = c$.

One option: If the continuity hypothesis is removed then $f : [0,1] \to \mathbb{R}$ defined by f(x) = 0 for $x \in [0,1)$ and f(1) = 1 is a counterexample with c = 0.5.

3. The following is true for any convergent sequence $\{x_n\} \to x_0$:

If
$$x_0 > 0$$
 then $\exists N \in \mathbb{N}, \forall n \ge N, x_n > 0$.

State the converse and give a counterexample showing that the converse is false. **Solution:** The converse is

If
$$\exists N \in \mathbb{N}, \forall n \geq N, x_n > 0$$
 then $x_0 > 0$.

A counter example is $\{1/n\}$ for which all terms are all greater than 0 and yet it converges to 0.

4. Prove using ϵ -N that:

$$\left\{2-\frac{1}{n}+\frac{3}{n^2}\right\}\to 2$$

Solution: For scratch we want to choose N so $n \ge N$ implies

$$\left|2-\frac{1}{n}+\frac{3}{n^2}-2\right|<\epsilon$$

Observe that

$$\left|2 - \frac{1}{n} + \frac{3}{n^2} - 2\right| = \left|-\frac{1}{n} + \frac{3}{n^2}\right| \le \left|-\frac{1}{n}\right| + \left|\frac{3}{n^2}\right| = \frac{1}{n} + \frac{3}{n^2} \le \frac{1}{n} + \frac{3}{n} = \frac{4}{n}$$

so if $\frac{4}{n} < \epsilon$ or $n > \frac{\epsilon}{4}$ we are safe.

To be formal let ϵ be given and choose $N > \frac{\epsilon}{4}$. Then if $n \ge N$ then $n > \frac{\epsilon}{4}$ and so $\frac{4}{n} < \epsilon$ and then

$$\left|2 - \frac{1}{n} + \frac{3}{n^2} - 2\right| = \left|-\frac{1}{n} + \frac{3}{n^2}\right| \le \left|-\frac{1}{n}\right| + \left|\frac{3}{n^2}\right| = \frac{1}{n} + \frac{3}{n^2} \le \frac{1}{n} + \frac{3}{n} = \frac{4}{n} < \epsilon$$

as desired.

5. Consider $f : \mathbb{R} \to \mathbb{R}$ defined by

$$f(x) = \begin{cases} 2x & \text{if } x \le 5\\ 0 & \text{if } x > 5 \end{cases}$$

Prove using the sequence definition of continuity that f(x) is continuous at x = 3. Solution: Suppose $\{x_n\} \to 3$. Choose N so that if $n \ge N$ then $|x_n - 3| < 2$. Then $x_n < 5$ and so $\{f(x_n)\} = \{2x_n\} \to 2(3) = 6 = f(3)$. 6. Suppose $f : \mathbb{R} \to \mathbb{R}$ is continuous and $x_0 \in \mathbb{R}$ with $f(x_0) > 0$. Show that there exists some $\alpha > 0$ such that f(x) > 0 for all $x \in (x_0 - \alpha, x_0 + \alpha)$

Solution: By the ϵ - δ criterion with $\delta = f(x_0)/2$ we can choose $\epsilon > 0$ so that if $|x - x_0| < \epsilon$ then $|f(x) - f(x_0)| < f(x_0)/2$. Let $\alpha = \epsilon$ and then if $|x - x_0| < \alpha$ then $|f(x) - f(x_0)| < f(x_0)/2$ which implies that $-f(x_0)/2 < f(x) - f(x_0) < f(x_0)/2$ which implies that $f(x) > f(x_0)/2 > 0$ as desired.

- 7. Suppose D is sequentially compact and f: D → R is continuous. Prove that f(D) is sequentially compact.
 Solution: Suppose {y_n} is a sequence in f(D). We claim there is a subsequence converging to something in f(D). Well for all n we have some x_n ∈ D with f(x_n) = y_n. Then {x_n} is a sequence in D which by sequential compactness has a subsequence {x_{nk}} → x₀ ∈ D. Then by continuity {f(x_{nk})} → f(x₀) ∈ f(D). Let y₀ = f(x₀) and so {f(x_{nk})} = {y_{nk}} is a subsequence of {y_n}
 - which converges to $f(x_0) = y_0 \in f(D)$.
- 8. Suppose $\{x_n\}$ is a bounded sequence which has the property that for all $n \in \mathbb{N}$ there is some $n_1 > n$ with $x_{n_1} > x_n$ and some $n_2 > n$ with $x_{n_2} < x_n$. Prove that $\{x_n\}$ does not converge. Solution: By way of contradiction suppose $\{x_n\} \to x_0$. The hypothesis allows us to construct
- a monotone increasing subsequence of x_n and a monotone decreasing subsequence of x_n which, since they are bounded, must converge by the MCT to the inf and sup of the set of sequence values. But they must also conver to x_0 which means this inf and sup must both equal x_0 so that the sequence must be constant which contradicts the hypotheses.