
MATH 410: Exam 1 Version 1 Solutions Spring 2019

1. State the following three definitions:

(a) Define what it means for {xn} → x0.
Solution: ∀ε > 0,∃N ∈ N,∀n ≥ N, |xn − x0| < ε

(b) Define what it means for a set S ⊆ R to be closed.
Solution: Every convergent sequence in S converges to something in S.

(c) Define what it means for a function f : D → R to be uniformly continuous.
Solution: If {un} and {vn} are in D and {un − vn} → 0 then {f(un)− f(vn)} → 0.

2. State the Intermediate Value Theorem. Pick one hypothesis, remove it, and give a counterexample
showing the new statement is false.
Solution: If f : [a, b]→ R is continuous and c is strictly between f(a) and f(b) then there exists
some x0 ∈ (a, b) with f(x0) = c.

One option: If the continuity hypothesis is removed then f : [0, 1] → R defined by f(x) = 0 for
x ∈ [0, 1) and f(1) = 1 is a counterexample with c = 0.5.

3. The following is true for any convergent sequence {xn} → x0:

If x0 > 0 then ∃N ∈ N,∀n ≥ N, xn > 0.

State the converse and give a counterexample showing that the converse is false.
Solution: The converse is

If ∃N ∈ N,∀n ≥ N, xn > 0 then x0 > 0.

A counter example is {1/n} for which all terms are all greater than 0 and yet it converges to 0.
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as desired.

5. Consider f : R→ R defined by

f(x) =

{
2x if x ≤ 5

0 if x > 5

Prove using the sequence definition of continuity that f(x) is continuous at x = 3.
Solution: Suppose {xn} → 3. Choose N so that if n ≥ N then |xn − 3| < 2. Then xn < 5 and
so {f(xn)} = {2xn} → 2(3) = 6 = f(3).



6. Suppose f : R→ R is continuous and x0 ∈ R with f(x0) > 0. Show that there exists some α > 0
such that f(x) > 0 for all x ∈ (x0 − α, x0 + α)
Solution: By the ε-δ criterion with δ = f(x0)/2 we can choose ε > 0 so that if |x − x0| < ε
then |f(x)− f(x0)| < f(x0)/2. Let α = ε and then if |x− x0| < α then |f(x)− f(x0)| < f(x0)/2
which implies that −f(x0)/2 < f(x) − f(x0) < f(x0)/2 which implies that f(x) > f(x0)/2 > 0
as desired.

7. Suppose D is sequentially compact and f : D → R is continuous. Prove that f(D) is sequentially
compact.
Solution: Suppose {yn} is a sequence in f(D). We claim there is a subsequence converging to
something in f(D). Well for all n we have some xn ∈ D with f(xn) = yn. Then {xn} is a sequence
in D which by sequential compactness has a subsequence {xnk

} → x0 ∈ D. Then by continuity
{f(xnk

)} → f(x0) ∈ f(D). Let y0 = f(x0) and so {f(xnk
)} = {ynk

} is a subsequence of {yn}
which converges to f(x0) = y0 ∈ f(D).

8. Suppose {xn} is a bounded sequence which has the property that for all n ∈ N there is some
n1 > n with xn1

> xn and some n2 > n with xn2
< xn. Prove that {xn} does not converge.

Solution: By way of contradiction suppose {xn} → x0. The hypothesis allows us to construct
a monotone increasing subsequence of xn and a monotone decreasing subsequence of xn which,
since they are bounded, must converge by the MCT to the inf and sup of the set of sequence
values. But they must also conver to x0 which means this inf and sup must both equal x0 so that
the sequence must be constant which contradicts the hypotheses.


