Directions:

- You will be graded on organization and presentation as well as correctness. Your solutions should be readable!
- Each numbered question is worth 10 points for a total of 80 points which will then be rescaled out of 100.
- 1. State the following three definitions:
 - (a) Define what it means for $\{x_n\} \to x_0$.
 - (b) Define what it means for a point $x_0 \in D \subseteq \mathbb{R}$ to be a limit point.
 - (c) Define what it means for a function $f: D \to \mathbb{R}$ to be continuous.
- 2. State the Extreme Value Theorem. Pick one hypothesis, remove it, and give a counterexample showing the new statement is false.
- 3. The following is true for any monotonically increasing sequence $\{x_n\}$ and any $M \in \mathbb{R}$:

If
$$\{x_n\} \to M$$
 then $\forall n \in \mathbb{N}, x_n \leq M$.

State the converse and give a counterexample showing that the converse is false.

4. Prove using ϵ -N that:

$$\left\{2-\frac{1}{n}+\frac{3}{n^2}\right\}\to 2$$

- 5. Consider $f:[3,\infty) \to \mathbb{R}$ defined by $f(x) = \frac{1}{x-1}$. Prove from the definition that f is uniformly continuous.
- 6. Suppose $f : [a, b] \to \mathbb{R}$ is continuous and for all $\epsilon > 0$ there is some $x \in [a, b]$ with $|f(x) 17| < \epsilon$. Prove there is some $x_0 \in [a, b]$ with $f(x_0) = 17$.
- 7. Problem removed due to error.
- 8. Suppose $\{x_n\}$ is a strictly decreasing sequence which has a convergent subsequence. Prove that $\{x_n\}$ converges.