
MATH 410: Exam 1 Version 2 Solution Spring 2019

1. State the following three definitions:

(a) Define what it means for {xn} → x0.
Solution: ∀ε > 0,∃N ∈ N,∀n ≥ N, |xn − x0| < ε

(b) Define what it means for a point x0 ∈ D ⊆ R to be a limit point.
Solution: There exists a sequence in D − {x0} which converges to x0.

(c) Define what it means for a function f : D → R to be continuous.
Solution: For all x0 ∈ D and for all sequences {xn} in D with {xn} → x0 we have
{f(xn)} → f(x0).

2. State the Extreme Value Theorem. Pick one hypothesis, remove it, and give a counterexample
showing the new statement is false.
Solution: The EVT states that if D is closed and bounded and f : D → R is continuous then f
achieves a max and min value.

One option: If the hypothesis that D be bounded is removed then f : R→ R given by f(x) = x2

has no maximum.

3. The following is true for any monotonically increasing sequence {xn} and any M ∈ R:

If {xn} →M then ∀n ∈ N, xn ≤M .

State the converse and give a counterexample showing that the converse is false.
Solution: The converse is

If ∀n ∈ N, xn ≤M then {xn} →M .

A counter example is {1− 1/n} with M = 2.
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as desired.



5. Consider f : [3,∞) → R defined by f(x) = 1
x−1 . Prove from the definition that f is uniformly

continuous.
Solution: Suppose {un} and {vn} are in [0,∞) such that {un − vn} → 0. Observe that:
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so that {f(un)− f(vn)} → 0 by the Comparison Lemma.

6. Suppose f : [a, b]→ R is continuous and for all ε > 0 there is some x ∈ [a, b] with |f(x)− 17| < ε.
Prove there is some x0 ∈ [a, b] with f(x0) = 17.
Solution: For each n ∈ N choose xn so that |f(xn) − 17| < 1

n so that {f(xn)} → 17 by the
Comparison Lemma. By the sequential compactness of [a, b] the sequence {xn} has a convergent
subsequence {xni} → x0 ∈ [a, b]. By continuity then {f(xni)} → f(x0) but since {f(xni)} → 17
we have f(x0) = 17.

Alternate Solution: By the EVT the function f has a maximum and a minimum. If either
of these is 17 then we’re done because the max and min are achieved by the MVT. We cannot
have 17 < min ≤ max since then the hypothesis would fail with ε = min−17

2 . We cannot have
min ≤ max < 17 since then the hypothesis would fail with ε = 17−max

2 . We must therefore have
min < 17 < max in which case a solution exists by the IVT.

7. Problem removed due to error.

8. Suppose {xn} is a strictly decreasing sequence which has a convergent subsequence. Prove that
{xn} converges.
Solution: Suppose the convergent subsequence is {xni} which is bounded below since it is mono-
tone decreasing and converges. Call the bound M so xni

≥ M for all ni. We claim {xn} is also
bounded below by M . Suppose not, then there is some n with xn < M . Let xnj

be an element
later in the subsequence so nj > n and so xnj

< xn < M which is a contradiction.


