1. State the following three definitions:
(a) Define what it means for $\left\{x_{n}\right\} \rightarrow x_{0}$.

Solution: $\forall \epsilon>0, \exists N \in \mathbb{N}, \forall n \geq N,\left|x_{n}-x_{0}\right|<\epsilon$
(b) Define what it means for a point $x_{0} \in D \subseteq \mathbb{R}$ to be a limit point.

Solution: There exists a sequence in $D-\left\{x_{0}\right\}$ which converges to x_{0}.
(c) Define what it means for a function $f: D \rightarrow \mathbb{R}$ to be continuous.

Solution: For all $x_{0} \in D$ and for all sequences $\left\{x_{n}\right\}$ in D with $\left\{x_{n}\right\} \rightarrow x_{0}$ we have $\left\{f\left(x_{n}\right)\right\} \rightarrow f\left(x_{0}\right)$.
2. State the Extreme Value Theorem. Pick one hypothesis, remove it, and give a counterexample showing the new statement is false.
Solution: The EVT states that if D is closed and bounded and $f: D \rightarrow \mathbb{R}$ is continuous then f achieves a max and min value.
One option: If the hypothesis that D be bounded is removed then $f: \mathbb{R} \rightarrow \mathbb{R}$ given by $f(x)=x^{2}$ has no maximum.
3. The following is true for any monotonically increasing sequence $\left\{x_{n}\right\}$ and any $M \in \mathbb{R}$:

$$
\text { If }\left\{x_{n}\right\} \rightarrow M \text { then } \forall n \in \mathbb{N}, x_{n} \leq M
$$

State the converse and give a counterexample showing that the converse is false.
Solution: The converse is

$$
\text { If } \forall n \in \mathbb{N}, x_{n} \leq M \text { then }\left\{x_{n}\right\} \rightarrow M
$$

A counter example is $\{1-1 / n\}$ with $M=2$.
4. Prove using $\epsilon-N$ that:

$$
\left\{2-\frac{1}{n}+\frac{3}{n^{2}}\right\} \rightarrow 2
$$

Solution: For scratch we want to choose N so $n \geq N$ implies

$$
\left|2-\frac{1}{n}+\frac{3}{n^{2}}-2\right|<\epsilon
$$

Observe that

$$
\left|2-\frac{1}{n}+\frac{3}{n^{2}}-2\right|=\left|-\frac{1}{n}+\frac{3}{n^{2}}\right| \leq\left|-\frac{1}{n}\right|+\left|\frac{3}{n^{2}}\right|=\frac{1}{n}+\frac{3}{n^{2}} \leq \frac{1}{n}+\frac{3}{n}=\frac{4}{n}
$$

so if $\frac{4}{n}<\epsilon$ or $n>\frac{\epsilon}{4}$ we are safe.
To be formal let ϵ be given and choose $N>\frac{\epsilon}{4}$. Then if $n \geq N$ then $n>\frac{\epsilon}{4}$ and so $\frac{4}{n}<\epsilon$ and then

$$
\left|2-\frac{1}{n}+\frac{3}{n^{2}}-2\right|=\left|-\frac{1}{n}+\frac{3}{n^{2}}\right| \leq\left|-\frac{1}{n}\right|+\left|\frac{3}{n^{2}}\right|=\frac{1}{n}+\frac{3}{n^{2}} \leq \frac{1}{n}+\frac{3}{n}=\frac{4}{n}<\epsilon
$$

as desired.
5. Consider $f:[3, \infty) \rightarrow \mathbb{R}$ defined by $f(x)=\frac{1}{x-1}$. Prove from the definition that f is uniformly continuous.
Solution: Suppose $\left\{u_{n}\right\}$ and $\left\{v_{n}\right\}$ are in $[0, \infty)$ such that $\left\{u_{n}-v_{n}\right\} \rightarrow 0$. Observe that:

$$
\left|f\left(u_{n}\right)-f\left(v_{n}\right)\right|=\left|\frac{1}{u_{n}-1}-\frac{1}{v_{n}-1}\right|=\left|\frac{v_{n}-u_{n}}{\left(u_{n}-1\right)\left(v_{n}-1\right)}\right|
$$

Since $u_{n}, v_{n} \in[3, \infty)$ we have $u_{n}, v_{n} \geq 3$ and so $\left(u_{n}-1\right)\left(v_{n}-1\right) \leq 4$ and so

$$
\left|\frac{v_{n}-u_{n}}{\left(u_{n}-1\right)\left(v_{n}-1\right)}\right| \leq \frac{1}{4}\left|v_{n}-u_{n}\right|
$$

so that $\left\{f\left(u_{n}\right)-f\left(v_{n}\right)\right\} \rightarrow 0$ by the Comparison Lemma.
6. Suppose $f:[a, b] \rightarrow \mathbb{R}$ is continuous and for all $\epsilon>0$ there is some $x \in[a, b]$ with $|f(x)-17|<\epsilon$. Prove there is some $x_{0} \in[a, b]$ with $f\left(x_{0}\right)=17$.
Solution: For each $n \in \mathbb{N}$ choose x_{n} so that $\left|f\left(x_{n}\right)-17\right|<\frac{1}{n}$ so that $\left\{f\left(x_{n}\right)\right\} \rightarrow 17$ by the Comparison Lemma. By the sequential compactness of $[a, b]$ the sequence $\left\{x_{n}\right\}$ has a convergent subsequence $\left\{x_{n_{i}}\right\} \rightarrow x_{0} \in[a, b]$. By continuity then $\left\{f\left(x_{n_{i}}\right)\right\} \rightarrow f\left(x_{0}\right)$ but since $\left\{f\left(x_{n_{i}}\right)\right\} \rightarrow 17$ we have $f\left(x_{0}\right)=17$.
Alternate Solution: By the EVT the function f has a maximum and a minimum. If either of these is 17 then we're done because the max and min are achieved by the MVT. We cannot have $17<\min \leq \max$ since then the hypothesis would fail with $\epsilon=\frac{\min -17}{2}$. We cannot have $\min \leq \max <17$ since then the hypothesis would fail with $\epsilon=\frac{17-\max }{2}$. We must therefore have $\min <17<\max$ in which case a solution exists by the IVT.
7. Problem removed due to error.
8. Suppose $\left\{x_{n}\right\}$ is a strictly decreasing sequence which has a convergent subsequence. Prove that $\left\{x_{n}\right\}$ converges.
Solution: Suppose the convergent subsequence is $\left\{x_{n_{i}}\right\}$ which is bounded below since it is monotone decreasing and converges. Call the bound M so $x_{n_{i}} \geq M$ for all n_{i}. We claim $\left\{x_{n}\right\}$ is also bounded below by M. Suppose not, then there is some n with $x_{n}<M$. Let $x_{n_{j}}$ be an element later in the subsequence so $n_{j}>n$ and so $x_{n_{j}}<x_{n}<M$ which is a contradiction.

