- You will be graded on organization and presentation as well as correctness. Your solutions should be readable!
- Each numbered question is worth 10 points for a total of 80 points which will then be rescaled out of 100.
- 1. State the following three definitions:
 - (a) If I is a neighborhood of x_0 , define what it means for $f: I \to \mathbb{R}$ to be differentiable at x_0 .
 - (b) Given $f:[a,b]\to\mathbb{R}$ and a partition $P=\{a=x_0,x_1,x_2,...,x_n=b\}$, define the upper Darboux sum U(f,P).
 - (c) Define what it means for a bounded function $f:[a,b]\to\mathbb{R}$ to be integrable.
- 2. State the Identity Criterion. Pick one hypothesis, remove it, and give a counterexample showing the new statement is false.
- 3. The following is true for any continuous function $f:[a,b]\to\mathbb{R}$:

If
$$\int_a^b f = 0$$
 then there is some $x_0 \in [a, b]$ with $f(x_0) = 0$.

State the converse and give a counterexample showing that the converse is false.

- 4. Suppose $f: \mathbb{R} \to \mathbb{R}$ is defined by $f(x) = x^2 3x$. Use the definition of the derivative and the sequence definition of the limit to find f'(-2).
- 5. Suppose $f: \mathbb{R} \to \mathbb{R}$ is such that f(3) = 0, f'(3) = 1, f''(3) = 0, and $f'''(x) \ge 0.02$ for all x. Use the Function Control Theorem to find a lower bound on f(3.3).
- 6. Let $n \in \mathbb{N}$. Suppose $f : \mathbb{R} \to \mathbb{R}$ is differentiable and f'(x) = 0 has at most n-1 solutions. Prove that f(x) = 0 has at most n solutions.
- 7. Suppose $f:[a,b]\to\mathbb{R}$ is continuous and suppose $G:[a,b]\to\mathbb{R}$ satisfies G(a)=0 and G'(x)=f(x) for all $x\in(a,b)$. Prove $G(x)=\int_a^x f$ for all $x\in(a,b)$.
- 8. Suppose $f:[a,b] \to \mathbb{R}$ is continuous and has the property that for all c,d with $a \le c < d \le b$ we have $\int_c^d f \ge 0$. Prove that $f(x) \ge 0$ for all $x \in [a,b]$.