- You will be graded on organization and presentation as well as correctness. Your solutions should be readable!
- Each numbered question is worth 10 points for a total of 80 points which will then be rescaled out of 100 .

1. State the following three definitions:
(a) If I is a neighborhood of x_{0}, define what it means for $f: I \rightarrow \mathbb{R}$ to be differentiable at x_{0}.
(b) Given $f:[a, b] \rightarrow \mathbb{R}$ and a partition $P=\left\{a=x_{0}, x_{1}, x_{2}, \ldots, x_{n}=b\right\}$, define the upper Darboux sum $U(f, P)$.
(c) Define what it means for a bounded function $f:[a, b] \rightarrow \mathbb{R}$ to be integrable.
2. State the Identity Criterion. Pick one hypothesis, remove it, and give a counterexample showing the new statement is false.
3. The following is true for any continuous function $f:[a, b] \rightarrow \mathbb{R}$:

$$
\text { If } \int_{a}^{b} f=0 \text { then there is some } x_{0} \in[a, b] \text { with } f\left(x_{0}\right)=0
$$

State the converse and give a counterexample showing that the converse is false.
4. Suppose $f: \mathbb{R} \rightarrow \mathbb{R}$ is defined by $f(x)=x^{2}-3 x$. Use the definition of the derivative and the sequence definition of the limit to find $f^{\prime}(-2)$.
5. Suppose $f: \mathbb{R} \rightarrow \mathbb{R}$ is such that $f(3)=0, f^{\prime}(3)=1, f^{\prime \prime}(3)=0$, and $f^{\prime \prime \prime}(x) \geq 0.02$ for all x. Use the Function Control Theorem to find a lower bound on $f(3.3)$.
6. Let $n \in \mathbb{N}$. Suppose $f: \mathbb{R} \rightarrow \mathbb{R}$ is differentiable and $f^{\prime}(x)=0$ has at most $n-1$ solutions. Prove that $f(x)=0$ has at most n solutions.
7. Suppose $f:[a, b] \rightarrow \mathbb{R}$ is continuous and suppose $G:[a, b] \rightarrow \mathbb{R}$ satisfies $G(a)=0$ and $G^{\prime}(x)=f(x)$ for all $x \in(a, b)$. Prove $G(x)=\int_{a}^{x} f$ for all $x \in(a, b)$.
8. Suppose $f:[a, b] \rightarrow \mathbb{R}$ is continuous and has the property that for all c, d with $a \leq c<d \leq b$ we have $\int_{c}^{d} f \geq 0$. Prove that $f(x) \geq 0$ for all $x \in[a, b]$.

