
MATH 410: Exam 2 Version 1 Solutions Spring 2019

1. State the following three definitions:

(a) If I is a neighborhood of x0, define what it means for f : I → R to be differentiable at x0.
Solution: There exists an L such that for any {xn} in I − {x0} converging to x0 we have{

f(xn)−f(x0)
xn−x0

}
→ L.

(b) Given f : [a, b] → R and a partition P = {a = x0, x1, x2, ..., xn = b}, define the upper
Darboux sum U(f, P ).

Solution: U(f, P ) =
n∑

i=1

Mi(xi − xi−1) where Mi is the supremum of f on [xi−1, xi].

(c) Define what it means for a bounded function f : [a, b]→ R to be integrable.

Solution: f is integrable if
∫ b

a
f =

∫ b

a
f .

2. State the Identity Criterion. Pick one hypothesis, remove it, and give a counterexample showing
the new statement is false.
Solution: If I is an open interval and f, g : I → R are differentiable then f ′ = g′ iff they
differ by a constant. If we remove differentiability then f, g : (0, 2)→ R defined by f(x) = 0 on
(0, 1] and f(x) = 1 on (1, 2) g(x) = 0 on (0, 1] and g(x) = 2 on (1, 2) have the same derivative
everywhere (that they have one) but they don’t differ by a constant.

3. The following is true for any continuous function f : [a, b]→ R:

If
∫ b

a
f = 0 then there is some x0 ∈ [a, b] with f(x0) = 0.

State the converse and give a counterexample showing that the converse is false.

Solution: The converse is: If there is some x0 ∈ [a, b] with f(x0) = 0 then
∫ b

a
f = 0. A

counterexample is f(x) = x2 on [−1, 1].

4. Suppose f : R → R is defined by f(x) = x2 − 3x. Use the definition of the derivative and the
sequence definition of the limit to find f ′(−2).
Solution: Suppose {xn} is in R− {−2} converging to −2. Then{

f(xn)− f(−2)

xn − (−2)

}
=

{
x2n − 3xn + 10

xn + 2

}
= {xn − 5} → −7

5. Suppose f : R→ R is such that f(3) = 0, f ′(3) = 1, f ′′(3) = 0, and f ′′′(x) ≥ 0.02 for all x. Use
the Function Control Theorem to find a lower bound on f(3.3).
Solution: Define g(x) = f(x)− x− 3 then g(3) = f(3)− 3− 3 = f(3) = 0, g′(x) = f ′(x)− 1 so
g′(3) = f ′(3)− 1 = 1− 1 = 0, g′′(x) = f ′′(x) so g′′(3) = 0 and g′′′(x) = f ′′′(x) ≥ 0.02 for all x.
By the FTC there exists some z between 0 and 0.02 with

g(3.3) =
g′′′(z)

3!
(3.3− 3)3 ≥ 0.02

6
(0.3)3

. Then

f(3.3) = g(3.3) + 3.3 + 3 ≥ 6.3 +
0.02

6
(0.3)3

6. Let n ∈ N. Suppose f : R→ R is differentiable and f ′(x) = 0 has at most n−1 solutions. Prove
that f(x) = 0 has at most n solutions.
Solution: By way of contradiction suppose f(x) = 0 has more solutions. Let x1 < x2 < ... <
xn+1 be n + 1 of them. For each i = 1, 2, ..., n apply Rolle’s Theorem to [xi, xi+1] to get some
ci ∈ (xi, xi+1) with f ′(ci) = 0. This is a contradiction.



7. Suppose f : [a, b] → R is continuous and suppose G : [a, b] → R satisfies G(a) = 0 and
G′(x) = f(x) for all x ∈ (a, b). Prove G(x) =

∫ x

a
f for all x ∈ (a, b).

Solution: Observe that d
dx

∫ x

a
f = f(x) = G′(x) so that

∫ x

a
f and G(x) differ by a constant by

the Identity Criterion. More specifically there is some C so that for all x we have
∫ x

a
f−G(x) = C

for some C. Then observe that when x = a we have
∫ a

a
f − G(a) = C and since

∫ a

a
f = 0 and

G(a) = 0 we have C = 0.

8. Suppose f : [a, b]→ R is continuous and has the property that for all c, d with a ≤ c < d ≤ b we

have
∫ d

c
f ≥ 0. Prove that f(x) ≥ 0 for all x ∈ [a, b].

Solution: Suppose there exists some x0 ∈ [a, b] with f(x0) < 0. Applying ε-δ to f at x0 with
ε = −f(x0) gives us δ such that for x0 − δ < x < x0 + δ we have f(x0) − (−f(x0)) < f(x) <
f(x0) + (−f(x0)) which yields f(x) < 0 on that interval. Take [c, d] = [x0 − δ, x0 + δ] ∩ [a, b].
Since f is continuous it has a maximum M < 0 on [c, d]. Then f(x) < M on [c, d] and so∫ d

c
f ≤M(d− c) < 0, a contradiction.


