1. State the following three definitions:
(a) If I is a neighborhood of x_{0}, define what it means for $f: I \rightarrow \mathbb{R}$ to be differentiable at x_{0}. Solution: There exists an L such that for any $\left\{x_{n}\right\}$ in $I-\left\{x_{0}\right\}$ converging to x_{0} we have $\left\{\frac{f\left(x_{n}\right)-f\left(x_{0}\right)}{x_{n}-x_{0}}\right\} \rightarrow L$.
(b) Given $f:[a, b] \rightarrow \mathbb{R}$ and a partition $P=\left\{a=x_{0}, x_{1}, x_{2}, \ldots, x_{n}=b\right\}$, define the upper Darboux sum $U(f, P)$.
Solution: $U(f, P)=\sum_{i=1}^{n} M_{i}\left(x_{i}-x_{i-1}\right)$ where M_{i} is the supremum of f on $\left[x_{i-1}, x_{i}\right]$.
(c) Define what it means for a bounded function $f:[a, b] \rightarrow \mathbb{R}$ to be integrable.

Solution: f is integrable if $\underline{\int_{a}^{b} f}=\overline{\int_{a}^{b}} f$.
2. State the Identity Criterion. Pick one hypothesis, remove it, and give a counterexample showing the new statement is false.
Solution: If I is an open interval and $f, g: I \rightarrow \mathbb{R}$ are differentiable then $f^{\prime}=g^{\prime}$ iff they differ by a constant. If we remove differentiability then $f, g:(0,2) \rightarrow \mathbb{R}$ defined by $f(x)=0$ on $(0,1]$ and $f(x)=1$ on $(1,2) g(x)=0$ on $(0,1]$ and $g(x)=2$ on $(1,2)$ have the same derivative everywhere (that they have one) but they don't differ by a constant.
3. The following is true for any continuous function $f:[a, b] \rightarrow \mathbb{R}$:

$$
\text { If } \int_{a}^{b} f=0 \text { then there is some } x_{0} \in[a, b] \text { with } f\left(x_{0}\right)=0
$$

State the converse and give a counterexample showing that the converse is false.
Solution: The converse is: If there is some $x_{0} \in[a, b]$ with $f\left(x_{0}\right)=0$ then $\int_{a}^{b} f=0$. A counterexample is $f(x)=x^{2}$ on $[-1,1]$.
4. Suppose $f: \mathbb{R} \rightarrow \mathbb{R}$ is defined by $f(x)=x^{2}-3 x$. Use the definition of the derivative and the sequence definition of the limit to find $f^{\prime}(-2)$.
Solution: Suppose $\left\{x_{n}\right\}$ is in $\mathbb{R}-\{-2\}$ converging to -2 . Then

$$
\left\{\frac{f\left(x_{n}\right)-f(-2)}{x_{n}-(-2)}\right\}=\left\{\frac{x_{n}^{2}-3 x_{n}+10}{x_{n}+2}\right\}=\left\{x_{n}-5\right\} \rightarrow-7
$$

5. Suppose $f: \mathbb{R} \rightarrow \mathbb{R}$ is such that $f(3)=0, f^{\prime}(3)=1$, $f^{\prime \prime}(3)=0$, and $f^{\prime \prime \prime}(x) \geq 0.02$ for all x. Use the Function Control Theorem to find a lower bound on $f(3.3)$.
Solution: Define $g(x)=f(x)-x-3$ then $g(3)=f(3)-3-3=f(3)=0, g^{\prime}(x)=f^{\prime}(x)-1$ so $g^{\prime}(3)=f^{\prime}(3)-1=1-1=0, g^{\prime \prime}(x)=f^{\prime \prime}(x)$ so $g^{\prime \prime}(3)=0$ and $g^{\prime \prime \prime}(x)=f^{\prime \prime \prime}(x) \geq 0.02$ for all x. By the FTC there exists some z between 0 and 0.02 with

$$
g(3.3)=\frac{g^{\prime \prime \prime}(z)}{3!}(3.3-3)^{3} \geq \frac{0.02}{6}(0.3)^{3}
$$

. Then

$$
f(3.3)=g(3.3)+3.3+3 \geq 6.3+\frac{0.02}{6}(0.3)^{3}
$$

6. Let $n \in \mathbb{N}$. Suppose $f: \mathbb{R} \rightarrow \mathbb{R}$ is differentiable and $f^{\prime}(x)=0$ has at most $n-1$ solutions. Prove that $f(x)=0$ has at most n solutions.
Solution: By way of contradiction suppose $f(x)=0$ has more solutions. Let $x_{1}<x_{2}<\ldots<$ x_{n+1} be $n+1$ of them. For each $i=1,2, \ldots, n$ apply Rolle's Theorem to $\left[x_{i}, x_{i+1}\right]$ to get some $c_{i} \in\left(x_{i}, x_{i+1}\right)$ with $f^{\prime}\left(c_{i}\right)=0$. This is a contradiction.
7. Suppose $f:[a, b] \rightarrow \mathbb{R}$ is continuous and suppose $G:[a, b] \rightarrow \mathbb{R}$ satisfies $G(a)=0$ and $G^{\prime}(x)=f(x)$ for all $x \in(a, b)$. Prove $G(x)=\int_{a}^{x} f$ for all $x \in(a, b)$.
Solution: Observe that $\frac{d}{d x} \int_{a}^{x} f=f(x)=G^{\prime}(x)$ so that $\int_{a}^{x} f$ and $G(x)$ differ by a constant by the Identity Criterion. More specifically there is some C so that for all x we have $\int_{a}^{x} f-G(x)=C$ for some C. Then observe that when $x=a$ we have $\int_{a}^{a} f-G(a)=C$ and since $\int_{a}^{a} f=0$ and $G(a)=0$ we have $C=0$.
8. Suppose $f:[a, b] \rightarrow \mathbb{R}$ is continuous and has the property that for all c, d with $a \leq c<d \leq b$ we have $\int_{c}^{d} f \geq 0$. Prove that $f(x) \geq 0$ for all $x \in[a, b]$.
Solution: Suppose there exists some $x_{0} \in[a, b]$ with $f\left(x_{0}\right)<0$. Applying $\epsilon-\delta$ to f at x_{0} with $\epsilon=-f\left(x_{0}\right)$ gives us δ such that for $x_{0}-\delta<x<x_{0}+\delta$ we have $f\left(x_{0}\right)-\left(-f\left(x_{0}\right)\right)<f(x)<$ $f\left(x_{0}\right)+\left(-f\left(x_{0}\right)\right)$ which yields $f(x)<0$ on that interval. Take $[c, d]=\left[x_{0}-\delta, x_{0}+\delta\right] \cap[a, b]$. Since f is continuous it has a maximum $M<0$ on $[c, d]$. Then $f(x)<M$ on $[c, d]$ and so $\int_{c}^{d} f \leq M(d-c)<0$, a contradiction.
