- 1. State the following three definitions:
 - (a) If *I* is a neighborhood of x_0 , define what it means for $f: I \to \mathbb{R}$ to be differentiable at x_0 . **Solution:** There exists an *L* such that for any $\{x_n\}$ in $I - \{x_0\}$ converging to x_0 we have $\left\{\frac{f(x_n) - f(x_0)}{x_n - x_0}\right\} \to L$.
 - (b) Given $f : [a, b] \to \mathbb{R}$ and a partition $P = \{a = x_0, x_1, x_2, ..., x_n = b\}$, define the upper Darboux sum U(f, P).

Solution: $U(f, P) = \sum_{i=1}^{n} M_i(x_i - x_{i-1})$ where M_i is the supremum of f on $[x_{i-1}, x_i]$.

- (c) Define what it means for a bounded function $f : [a, b] \to \mathbb{R}$ to be integrable. Solution: f is integrable if $\underline{\int_a^b} f = \overline{\int_a^b} f$.
- 2. State the Identity Criterion. Pick one hypothesis, remove it, and give a counterexample showing the new statement is false.

Solution: If I is an open interval and $f, g : I \to \mathbb{R}$ are differentiable then f' = g' iff they differ by a constant. If we remove differentiability then $f, g : (0, 2) \to \mathbb{R}$ defined by f(x) = 0 on (0, 1] and f(x) = 1 on (1, 2) g(x) = 0 on (0, 1] and g(x) = 2 on (1, 2) have the same derivative everywhere (that they have one) but they don't differ by a constant.

3. The following is true for any continuous function $f : [a, b] \to \mathbb{R}$:

If
$$\int_a^b f = 0$$
 then there is some $x_0 \in [a, b]$ with $f(x_0) = 0$.

State the converse and give a counterexample showing that the converse is false. Solution: The converse is: If there is some $x_0 \in [a, b]$ with $f(x_0) = 0$ then $\int_a^b f = 0$. A counterexample is $f(x) = x^2$ on [-1, 1].

4. Suppose f: R → R is defined by f(x) = x² - 3x. Use the definition of the derivative and the sequence definition of the limit to find f'(-2).
Solution: Suppose {x_n} is in R - {-2} converging to -2. Then

$$\left\{\frac{f(x_n) - f(-2)}{x_n - (-2)}\right\} = \left\{\frac{x_n^2 - 3x_n + 10}{x_n + 2}\right\} = \{x_n - 5\} \to -7$$

5. Suppose $f : \mathbb{R} \to \mathbb{R}$ is such that f(3) = 0, f'(3) = 1, f''(3) = 0, and $f'''(x) \ge 0.02$ for all x. Use the Function Control Theorem to find a lower bound on f(3.3). **Solution:** Define g(x) = f(x) - x - 3 then g(3) = f(3) - 3 - 3 = f(3) = 0, g'(x) = f'(x) - 1 so g'(3) = f'(3) - 1 = 1 - 1 = 0, g''(x) = f''(x) so g''(3) = 0 and $g'''(x) = f'''(x) \ge 0.02$ for all x.

g'(3) = f'(3) - 1 = 1 - 1 = 0, g''(x) = f''(x) so g''(3) = 0 and $g'''(x) = f'''(x) \ge 0.02$ for all x. By the FTC there exists some z between 0 and 0.02 with

$$g(3.3) = \frac{g'''(z)}{3!}(3.3-3)^3 \ge \frac{0.02}{6}(0.3)^3$$

. Then

$$f(3.3) = g(3.3) + 3.3 + 3 \ge 6.3 + \frac{0.02}{6}(0.3)^3$$

6. Let $n \in \mathbb{N}$. Suppose $f : \mathbb{R} \to \mathbb{R}$ is differentiable and f'(x) = 0 has at most n-1 solutions. Prove that f(x) = 0 has at most n solutions.

Solution: By way of contradiction suppose f(x) = 0 has more solutions. Let $x_1 < x_2 < ... < x_{n+1}$ be n+1 of them. For each i = 1, 2, ..., n apply Rolle's Theorem to $[x_i, x_{i+1}]$ to get some $c_i \in (x_i, x_{i+1})$ with $f'(c_i) = 0$. This is a contradiction.

- 7. Suppose $f : [a,b] \to \mathbb{R}$ is continuous and suppose $G : [a,b] \to \mathbb{R}$ satisfies G(a) = 0 and G'(x) = f(x) for all $x \in (a,b)$. Prove $G(x) = \int_a^x f$ for all $x \in (a,b)$. **Solution:** Observe that $\frac{d}{dx} \int_a^x f = f(x) = G'(x)$ so that $\int_a^x f$ and G(x) differ by a constant by the Identity Criterion. More specifically there is some C so that for all x we have $\int_a^x f - G(x) = C$ for some C. Then observe that when x = a we have $\int_a^a f - G(a) = C$ and since $\int_a^a f = 0$ and G(a) = 0 we have C = 0.
- 8. Suppose $f : [a, b] \to \mathbb{R}$ is continuous and has the property that for all c, d with $a \le c < d \le b$ we have $\int_c^d f \ge 0$. Prove that $f(x) \ge 0$ for all $x \in [a, b]$. **Solution:** Suppose there exists some $x_0 \in [a, b]$ with $f(x_0) < 0$. Applying ϵ - δ to f at x_0 with $\epsilon = -f(x_0)$ gives us δ such that for $x_0 - \delta < x < x_0 + \delta$ we have $f(x_0) - (-f(x_0)) < f(x) < f(x_0) + (-f(x_0))$ which yields f(x) < 0 on that interval. Take $[c, d] = [x_0 - \delta, x_0 + \delta] \cap [a, b]$. Since f is continuous it has a maximum M < 0 on [c, d]. Then f(x) < M on [c, d] and so $\int_c^d f \le M(d-c) < 0$, a contradiction.