- You will be graded on organization and presentation as well as correctness. Your solutions should be readable!
- Each numbered question is worth 10 points for a total of 80 points which will then be rescaled out of 100.
- 1. State the following three definitions:
 - (a) If I is a neighborhood of x_0 , define what it means for $f: I \to \mathbb{R}$ to be differentiable at x_0 .
 - (b) Given $f : [a, b] \to \mathbb{R}$ and a partition $P = \{a = x_0, x_1, x_2, ..., x_n = b\}$, define the lower Darboux sum L(f, P).
 - (c) For a bounded function $f : [a, b] \to \mathbb{R}$ define the upper Darboux integral.
- 2. State the Mean Value Theorem. Pick one hypothesis, remove it, and give a counterexample showing the new statement is false.
- 3. For an open interval I the following is true for any differentiable function $f: I \to \mathbb{R}$:

If f'(x) < 0 for all $x \in I$ then f is strictly decreasing.

State the converse and give a counterexample showing that the converse is false.

4. Define $f: [0,3] \to \mathbb{R}$ by

$$f(x) = \begin{cases} 2 & \text{if } x \in [0, 1] \\ 3 - x & \text{if } x \in (1, 3] \end{cases}$$

Write down the algebraic rule for an antiderivative of f.

- 5. Consider $f : [0,2] \to \mathbb{R}$ defined by f(x) = 2x. You may assume f is integrable. Use the AR Theorem to calculate $\int_0^2 f$.
- 6. Let $x_0 \in \mathbb{R}$. Suppose $f, g : \mathbb{R} \to \mathbb{R}$ are differentiable and satisfy $f(x_0) < g(x_0)$ and $f'(x) \le g'(x)$ for all $x \ge x_0$.
- 7. Suppose $f, g : [a, b] \to \mathbb{R}$ are continuous. Prove that:

$$\int_a^b |f+g| \leq \int_a^b |f| + \int_a^b |g|$$

8. Suppose $f : [a, b] \to \mathbb{R}$ is monotone increasing. Prove that f is integrable. Of course you may not use the theorem that monotone functions are integrable!