- You will be graded on organization and presentation as well as correctness. Your solutions should be readable!
- Each numbered question is worth 10 points for a total of 80 points which will then be rescaled out of 100 .

1. State the following three definitions:
(a) If I is a neighborhood of x_{0}, define what it means for $f: I \rightarrow \mathbb{R}$ to be differentiable at x_{0}.
(b) Given $f:[a, b] \rightarrow \mathbb{R}$ and a partition $P=\left\{a=x_{0}, x_{1}, x_{2}, \ldots, x_{n}=b\right\}$, define the lower Darboux sum $L(f, P)$.
(c) For a bounded function $f:[a, b] \rightarrow \mathbb{R}$ define the upper Darboux integral.
2. State the Mean Value Theorem. Pick one hypothesis, remove it, and give a counterexample showing the new statement is false.
3. For an open interval I the following is true for any differentiable function $f: I \rightarrow \mathbb{R}$:

$$
\text { If } f^{\prime}(x)<0 \text { for all } x \in I \text { then } f \text { is strictly decreasing. }
$$

State the converse and give a counterexample showing that the converse is false.
4. Define $f:[0,3] \rightarrow \mathbb{R}$ by

$$
f(x)= \begin{cases}2 & \text { if } x \in[0,1] \\ 3-x & \text { if } x \in(1,3]\end{cases}
$$

Write down the algebraic rule for an antiderivative of f.
5. Consider $f:[0,2] \rightarrow \mathbb{R}$ defined by $f(x)=2 x$. You may assume f is integrable. Use the AR Theorem to calculate $\int_{0}^{2} f$.
6. Let $x_{0} \in \mathbb{R}$. Suppose $f, g: \mathbb{R} \rightarrow \mathbb{R}$ are differentiable and satisfy $f\left(x_{0}\right)<g\left(x_{0}\right)$ and $f^{\prime}(x) \leq g^{\prime}(x)$ for all $x \geq x_{0}$. Prove that $f(x)<g(x)$ for all $x \geq x_{0}$.
7. Suppose $f, g:[a, b] \rightarrow \mathbb{R}$ are continuous. Prove that:

$$
\int_{a}^{b}|f+g| \leq \int_{a}^{b}|f|+\int_{a}^{b}|g|
$$

8. Suppose $f:[a, b] \rightarrow \mathbb{R}$ is monotone increasing. Prove that f is integrable. Of course you may not use the theorem that monotone functions are integrable!
