1. State the following three definitions:
(a) If I is a neighborhood of x_{0}, define what it means for $f: I \rightarrow \mathbb{R}$ to be differentiable at x_{0}. Solution: There exists an L such that for any $\left\{x_{n}\right\}$ in $I-\left\{x_{0}\right\}$ converging to x_{0} we have $\left\{\frac{f\left(x_{n}\right)-f\left(x_{0}\right)}{x_{n}-x_{0}}\right\} \rightarrow L$.
(b) Given $f:[a, b] \rightarrow \mathbb{R}$ and a partition $P=\left\{a=x_{0}, x_{1}, x_{2}, \ldots, x_{n}=b\right\}$, define the lower Darboux sum $L(f, P)$.
Solution: $L(f, P)=\sum_{i=1}^{n} m_{i}\left(x_{i}-x_{i-1}\right)$ where m_{i} is the infimum of f on $\left[x_{i-1}, x_{i}\right]$.
(c) For a bounded function $f:[a, b] \rightarrow \mathbb{R}$ define the upper Darboux integral.

Solution: $\overline{\int_{a}^{b}} f=\inf \{U(f, P) \mid$ All partitions P of $[a, b]\}$
2. State the Mean Value Theorem. Pick one hypothesis, remove it, and give a counterexample showing the new statement is false.
Solution: Suppose that $f:[a, b] \rightarrow \mathbb{R}$ is continuous on $[a, b]$ and differentiable on (a, b). Then there is a point $x_{0} \in(a, b)$ at which $f^{\prime}\left(x_{0}\right)=\frac{f(b)-f(a)}{b-a}$. If we remove differentiability then a counterexample is $f(x)=|x|$ on $[1,1]$.
3. For an open interval I the following is true for any differentiable function $f: I \rightarrow \mathbb{R}$:

$$
\text { If } f^{\prime}(x)<0 \text { for all } x \in I \text { then } f \text { is strictly decreasing. }
$$

State the converse and give a counterexample showing that the converse is false.
Solution: The converse is: If f is strictly decreasing then $f^{\prime}(x)<0$ for all $x \in I$. A counterexample is $f(x)=-x^{1 / 3}$ on $[-1,1]$.
4. Define $f:[0,3] \rightarrow \mathbb{R}$ by

$$
f(x)= \begin{cases}2 & \text { if } x \in[0,1] \\ 3-x & \text { if } x \in(1,3]\end{cases}
$$

Write down the algebraic rule for an antiderivative of f.
Solution: Since f is continuous we can apply the SFTOC so $F(x)=\int_{0}^{x} f$ is an antiderivative. If $x \in[0,1]$ then:

$$
F(x)=\int_{0}^{x} f=\int_{0}^{x} 2=\left.2 t\right|_{0} ^{x}=2 x
$$

If $x \in(1,3]$ then:

$$
F(x)=\int_{0}^{x} f=\int_{0}^{1} 2+\int_{1}^{x} 3-t=\left.2 x\right|_{0} ^{1}+\left.\left(3 t-\frac{1}{2} t^{2}\right)\right|_{1} ^{x}=2+\left(3 x-\frac{1}{2} x^{2}\right)-\left(3-\frac{1}{2}\right)
$$

5. Consider $f:[0,2] \rightarrow \mathbb{R}$ defined by $f(x)=2 x$. You may assume f is integrable. Use the AR Theorem to calculate $\int_{0}^{2} f$.
Solution: Define $\left\{P_{n}\right\}$ as the sequence of regular partitions so

$$
P_{n}=\left\{0,1 \cdot \frac{2}{n}, 2 \cdot \frac{2}{n}, \ldots,(n-1) \cdot \frac{2}{n}, 2\right\}
$$

Observe that:

$$
L\left(f, P_{n}\right)=\frac{2}{n}\left[2(0)+2\left(1 \cdot \frac{2}{n}\right)+\ldots+2\left((n-1) \frac{2}{n}\right)\right]
$$

and

$$
U\left(f, P_{n}\right)=\frac{2}{n}\left[2\left(1 \cdot \frac{2}{n}\right)+\ldots+2\left((n-1) \frac{2}{n}\right)+2(2)\right]
$$

So that

$$
\left\{U\left(f, P_{n}\right)-L\left(f, P_{n}\right)\right\}=\left\{\frac{2}{n}[4-0]\right\} \rightarrow 0
$$

so that $\left\{P_{n}\right\}$ is an ASOP. Then observe that

$$
\left\{U\left(f, P_{n}\right)\right\}=\left\{\frac{2}{n}\left[\frac{4}{n}+\frac{8}{n}+\ldots+\frac{4 n}{n}\right]\right\}=\left\{\frac{8}{n^{2}} \frac{n(n+1)}{2}\right\}=\left\{4\left(1+\frac{1}{n}\right)\right\} \rightarrow 4
$$

6. Let $x_{0} \in \mathbb{R}$. Suppose $f, g: \mathbb{R} \rightarrow \mathbb{R}$ are differentiable and satisfy $f\left(x_{0}\right)<g\left(x_{0}\right)$ and $f^{\prime}(x) \leq g^{\prime}(x)$ for all $x \geq x_{0}$. Prove that $f(x)<g(x)$ for all $x \geq x_{0}$.
Solution: If we define $h(x)=g(x)-f(x)$ then h is differentiable and the problem becomes:
Suppose $h(x)$ satisfies $h\left(x_{0}\right)>0$ and $h^{\prime}(x) \geq 0$ for $x \geq x_{0}$. Prove that $h(x)>0$ for all $x>x_{0}$.
Assume by way of contradiction there is some $x_{1} \geq x_{0}$ with $h\left(x_{1}\right) \leq 0$. Clearly $x_{1}>x_{0}$ since $h\left(x_{0}\right)>0$ so then consider by the MVT there is some $x_{2} \in\left(x_{0}, x_{1}\right)$ with:

$$
h^{\prime}\left(x_{1}\right)=\frac{h\left(x_{1}\right)-h\left(x_{0}\right)}{x_{1}-x_{0}}<0
$$

which is a contradiction.
7. Suppose $f, g:[a, b] \rightarrow \mathbb{R}$ are continuous. Prove that:

$$
\int_{a}^{b}|f+g| \leq \int_{a}^{b}|f|+\int_{a}^{b}|g|
$$

Solution: This wasn't intended to be so easy but basically by the triangle inequality we have $|f+g| \leq|f|+|g|$ and the result follows by the monotonicity of the integral.
8. Suppose $f:[a, b] \rightarrow \mathbb{R}$ is monotone increasing. Prove that f is integrable. Of course you may not use the theorem that monotone functions are integrable!
Solution: For the regular partition $\left\{a=x_{0}, x_{1}, \ldots, x_{n-1}, x_{n}=b\right\}$ we have:

$$
L(f, P)=\frac{b-a}{n}\left[f\left(x_{0}\right)+\ldots+f\left(x_{n-1}\right)\right] \quad \text { and } \quad U(f, P)=\frac{b-a}{n}\left[f\left(x_{1}\right)+\ldots+f\left(x_{n}\right)\right]
$$

It follows that:

$$
\{U(f, p)-L(f, P)\}=\left\{\frac{b-a}{n}\left[f\left(x_{n}\right)-f\left(x_{0}\right)\right]\right\}=\left\{\frac{b-a}{n}[f(b)-f(a)]\right\} \rightarrow 0
$$

so that f is integrable by the AR Theorem.

