
MATH 410: Exam 2 Version 2 Solutions Spring 2019

1. State the following three definitions:

(a) If I is a neighborhood of x0, define what it means for f : I → R to be differentiable at x0.
Solution: There exists an L such that for any {xn} in I − {x0} converging to x0 we have{

f(xn)−f(x0)
xn−x0

}
→ L.

(b) Given f : [a, b] → R and a partition P = {a = x0, x1, x2, ..., xn = b}, define the lower
Darboux sum L(f, P ).

Solution: L(f, P ) =
n∑

i=1

mi(xi − xi−1) where mi is the infimum of f on [xi−1, xi].

(c) For a bounded function f : [a, b]→ R define the upper Darboux integral.

Solution:
∫ b

a
f = inf {U(f, P ) |All partitions P of [a, b]}

2. State the Mean Value Theorem. Pick one hypothesis, remove it, and give a counterexample
showing the new statement is false.
Solution: Suppose that f : [a, b] → R is continuous on [a, b] and differentiable on (a, b). Then

there is a point x0 ∈ (a, b) at which f ′(x0) = f(b)−f(a)
b−a . If we remove differentiability then a

counterexample is f(x) = |x| on [1, 1].

3. For an open interval I the following is true for any differentiable function f : I → R:

If f ′(x) < 0 for all x ∈ I then f is strictly decreasing.

State the converse and give a counterexample showing that the converse is false.
Solution: The converse is: If f is strictly decreasing then f ′(x) < 0 for all x ∈ I. A counterex-
ample is f(x) = −x1/3 on [−1, 1].

4. Define f : [0, 3]→ R by

f(x) =

{
2 if x ∈ [0, 1]

3− x if x ∈ (1, 3]

Write down the algebraic rule for an antiderivative of f .
Solution: Since f is continuous we can apply the SFTOC so F (x) =

∫ x

0
f is an antiderivative.

If x ∈ [0, 1] then:

F (x) =

∫ x

0

f =

∫ x

0

2 = 2t

∣∣∣∣x
0

= 2x

If x ∈ (1, 3] then:

F (x) =

∫ x

0

f =

∫ 1

0

2 +

∫ x

1

3− t = 2x

∣∣∣∣1
0

+

(
3t− 1

2
t2
) ∣∣∣∣x

1

= 2 +

(
3x− 1

2
x2

)
−
(

3− 1

2

)



5. Consider f : [0, 2] → R defined by f(x) = 2x. You may assume f is integrable. Use the AR

Theorem to calculate
∫ 2

0
f .

Solution: Define {Pn} as the sequence of regular partitions so

Pn =

{
0, 1 · 2

n
, 2 · 2

n
, ..., (n− 1) · 2

n
, 2

}
Observe that:

L(f, Pn) =
2

n

[
2(0) + 2

(
1 · 2

n

)
+ ... + 2

(
(n− 1)

2

n

)]
and

U(f, Pn) =
2

n

[
2

(
1 · 2

n

)
+ ... + 2

(
(n− 1)

2

n

)
+ 2(2)

]
So that

{U(f, Pn)− L(f, Pn)} =

{
2

n
[4− 0]

}
→ 0

so that {Pn} is an ASOP. Then observe that

{U(f, Pn)} =

{
2

n

[
4

n
+

8

n
+ ... +

4n

n

]}
=

{
8

n2

n(n + 1)

2

}
=

{
4

(
1 +

1

n

)}
→ 4

6. Let x0 ∈ R. Suppose f, g : R→ R are differentiable and satisfy f(x0) < g(x0) and f ′(x) ≤ g′(x)
for all x ≥ x0. Prove that f(x) < g(x) for all x ≥ x0.
Solution: If we define h(x) = g(x)− f(x) then h is differentiable and the problem becomes:

Suppose h(x) satisfies h(x0) > 0 and h′(x) ≥ 0 for x ≥ x0. Prove that h(x) > 0 for all x > x0.

Assume by way of contradiction there is some x1 ≥ x0 with h(x1) ≤ 0. Clearly x1 > x0 since
h(x0) > 0 so then consider by the MVT there is some x2 ∈ (x0, x1) with:

h′(x1) =
h(x1)− h(x0)

x1 − x0
< 0

which is a contradiction.

7. Suppose f, g : [a, b]→ R are continuous. Prove that:∫ b

a

|f + g| ≤
∫ b

a

|f |+
∫ b

a

|g|

Solution: This wasn’t intended to be so easy but basically by the triangle inequality we have
|f + g| ≤ |f |+ |g| and the result follows by the monotonicity of the integral.

8. Suppose f : [a, b] → R is monotone increasing. Prove that f is integrable. Of course you may
not use the theorem that monotone functions are integrable!
Solution: For the regular partition {a = x0, x1, ..., xn−1, xn = b} we have:

L(f, P ) = b−a
n [f(x0) + ... + f(xn−1)] and U(f, P ) = b−a

n [f(x1) + ... + f(xn)]

It follows that:

{U(f, p)− L(f, P )} =

{
b− a

n
[f(xn)− f(x0)]

}
=

{
b− a

n
[f(b)− f(a)]

}
→ 0

so that f is integrable by the AR Theorem.


