
Math 410 Section 2.1: Sequences and Convergence

1. Definition: A sequence is formally a function f : N → R.
Example: f(n) = n2.
We think of a sequence as a succession of terms, though, like if we plugged in 1, 2, 3, ... so the above
would be 1, 4, 9, 16, ...
More typical notation would be one of an = n2 or {n2} or giving the terms if it’s clear.
Sometimes a sequence may be given recursively.
Example: If a1 = 4 and for n > 1 we have an =

√
an−1 + 2. Then a2 =

√
a1 + 2 =

√
6 and

a3 =
√
a2 + 2 =

√√
6 + 2 and so on.

2. Convergence

(a) Idea: We are interested in the long-term behavior of a sequence as n → ∞. For example the
terms in the sequence

{

1

n

}

approach 0 whle the terms in the sequence {2n} head off to infinity.
The specific case when the terms in a sequence {an} approach a specific value a is captured by
the following idea that we then formalize:

”No matter how close we want the terms to get to a, eventually they get that close and stay that
close.”

(b) Definition: We define {an} → a if:

∀ǫ > 0, ∃N ∈ N such that if n ≥ N then |an − a| < ǫ

In practice when we’re using this to show convergence we have to obey the quantifiers - we start
with an (unknown) ǫ and show how we can get some N (which will almost always depend on ǫ)
so that for n ≥ N we have |an − a| < ǫ.
Example:
Show

{

3

n

}

→ 0.

Scratch: Assume ǫ > 0 is given (and unknown). We need N so that if n ≥ N then
∣

∣

3

n
− 0

∣

∣ < ǫ.

Notice that
∣

∣

3

n
− 0

∣

∣ = 3

n
and 3

n
< ǫ iff n > 3

ǫ
so as long as N > 3

ǫ
we’re good.

Proof: Given ǫ > 0 let N = ⌈ 3

ǫ
⌉+ 1. Then if n ≥ N then n ≥ ⌈ 3

ǫ
⌉ > 3

ǫ
and so

∣

∣

3

n
− 0

∣

∣ < ǫ.
Example:
Show

{

7

n2 − 2

n
+ 5

}

→ 5
Scratch: Observe that using the Triangle Inequality

∣

∣

∣

∣

7

n2
− 2

n
+ 5− 5

∣

∣

∣

∣

=

∣

∣

∣

∣

7

n2
+

(

− 2

n

)
∣

∣

∣

∣

≤
∣

∣

∣

∣

7

n2

∣

∣

∣

∣

+

∣

∣

∣

∣

2

n

∣

∣

∣

∣

≤
∣

∣

∣

∣

7

n

∣

∣

∣

∣

+

∣

∣

∣

∣

2

n

∣

∣

∣

∣

=
9

n

Since 9

n
< ǫ iff n > 9

ǫ
we know as long as N > 9

ǫ
we’re good.

Proof: Given ǫ > 0 let N = ⌈ 9

ǫ
⌉+ 1. Then if n ≥ N then n ≥ ⌈ 9

ǫ
⌉+ 1 > 9

ǫ
and so

∣

∣

∣

∣

7

n2
− 2

n
+ 5− 5

∣

∣

∣

∣

=

∣

∣

∣

∣

7

n2
+

(

− 2

n

)∣
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∣
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∣
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+
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∣
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∣
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∣
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7
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+
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∣

∣

∣

2

n

∣

∣

∣

∣

=
9

n
< ǫ



Example:

Prove that if {an} → 2 then
{

1

an

}

→ 1

2
.

The claim here is that:

∀ǫ > 0 ∃N ∈ N st if n ≥ N then
∣

∣

∣

1

an

− 1

2

∣

∣

∣
< ǫ

Scratch
So given some unknown ǫ > 0 how can we choose N ∈ N so that if n ≥ N then

∣

∣

∣

1

an

− 1

2

∣

∣

∣
< ǫ ?

Observe that

∣

∣

∣

∣

1

an
− 1

2

∣

∣

∣

∣

=

∣

∣

∣

∣

2− an

2an

∣

∣

∣

∣

=

∣

∣

∣

∣

an − 2

2an

∣

∣

∣

∣

so really we’re trying to make
∣

∣

∣

an−2

2an

∣

∣

∣
small ... less than ǫ.

We know that we can make an as close to 2 as we like because {an} → 2 so we can make the
numerator as small as we like but that denominator is awkward. We know it’s approaching 4
because {an} → 2 but we don’t have an inequality for it - it could be bigger or smaller than 4 for
any given n.
However since {an} → 2 we know that eventually an > 1 because eventually {an} is as close as
we like to 2. If an > 1 then we’d have:

∣

∣

∣

∣

an − 2

2an

∣

∣

∣

∣

<

∣

∣

∣

∣

an − 2

2(1)

∣

∣

∣

∣

=
1

2
|an − 2|

at this point we can make |an − 2| < 2ǫ and we have what we want.
Note that we need two cutoffs here. We need N1 beyond which an > 1 and N2 beyond which
|an − 2| < 2ǫ.
Formal Proof
Given ǫ > 0:

• Choose N1 so that if n ≥ N1 then |an − 2| < 1 so that an > 1.

• Choose N2 so that if n ≥ N2 then |an − 2| < 2ǫ.

Let N = max{N1, N2}. Then if n ≥ N then we have:

∣
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∣
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∣
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∣

∣
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∣
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∣

=
1

2
|an − 2| < 1

2
(2ǫ) = ǫ

QED



3. The Comparison Lemma
The Comparison Lemma is a very useful tool for showing convergence of one sequence based on con-
vergence of another.
Theorem (The Comparison Lemma):
Suppose {an} → a and suppose {bn} is a sequence and b ∈ R. Now suppose there is some C ∈ R

+ and
some N ∈ N such that if n ≥ N then |bn − b| < C|an − a|. Then {bn} → b.
Intuition: We need to get |bn − b| small. We go far enough in the sequence for the inequality to be
true and far enough for C|an − a| to be small enough.
Proof:
Let ǫ > 0. Choose N1 so that if n ≥ N1 then |bn − b| < C|an − a|. Choose N2 so that if n ≥ N2 then
|an − a| < ǫ

C
. Let N = max{N1, N2}. Then if n ≥ N then

|bn − b| < C|an − a| < C
( ǫ

C

)

= ǫ

QED
4. Theorem (Combinations):

If {an} → a and {bn} → b then:

(a) {an ± bn} → a± b

Proof for +: Let ǫ > 0. Choose N1 so that if n ≥ N1 then |an − a| < ǫ

2
and choose N2 so that

if n ≥ N2 then |bn − b| < ǫ

2
. Let N = max{N1, N2} then if n ≥ N then

|(an + bn)− (a+ b)| = |an − a+ bn − b| ≤ |an − a|+ |bn − b| < ǫ

QED
(b) {anbn} → ab

(c)
{

an

bn

}

→ a

b
provided b 6= 0 and ∀n, bn 6= 0.

(d) If p(x) is a polynomial then {p(an)} → p(a).


