1. Definition: A sequence is formally a function $f: \mathbb{N} \rightarrow \mathbb{R}$.

Example: $f(n)=n^{2}$.
We think of a sequence as a succession of terms, though, like if we plugged in $1,2,3, \ldots$ so the above would be $1,4,9,16, \ldots$
More typical notation would be one of $a_{n}=n^{2}$ or $\left\{n^{2}\right\}$ or giving the terms if it's clear.
Sometimes a sequence may be given recursively.
Example: If $a_{1}=4$ and for $n>1$ we have $a_{n}=\sqrt{a_{n-1}+2}$. Then $a_{2}=\sqrt{a_{1}+2}=\sqrt{6}$ and $a_{3}=\sqrt{a_{2}+2}=\sqrt{\sqrt{6}+2}$ and so on.

2. Convergence

(a) Idea: We are interested in the long-term behavior of a sequence as $n \rightarrow \infty$. For example the terms in the sequence $\left\{\frac{1}{n}\right\}$ approach 0 whle the terms in the sequence $\left\{2^{n}\right\}$ head off to infinity. The specific case when the terms in a sequence $\left\{a_{n}\right\}$ approach a specific value a is captured by the following idea that we then formalize:
"No matter how close we want the terms to get to a, eventually they get that close and stay that close."
(b) Definition: We define $\left\{a_{n}\right\} \rightarrow a$ if:

$$
\forall \epsilon>0, \exists N \in \mathbb{N} \text { such that if } n \geq N \text { then }\left|a_{n}-a\right|<\epsilon
$$

In practice when we're using this to show convergence we have to obey the quantifiers - we start with an (unknown) ϵ and show how we can get some N (which will almost always depend on ϵ) so that for $n \geq N$ we have $\left|a_{n}-a\right|<\epsilon$.

Example:

Show $\left\{\frac{3}{n}\right\} \rightarrow 0$.
Scratch: Assume $\epsilon>0$ is given (and unknown). We need N so that if $n \geq N$ then $\left|\frac{3}{n}-0\right|<\epsilon$. Notice that $\left|\frac{3}{n}-0\right|=\frac{3}{n}$ and $\frac{3}{n}<\epsilon$ iff $n>\frac{3}{\epsilon}$ so as long as $N>\frac{3}{\epsilon}$ we're good.
Proof: Given $\epsilon>0$ let $N=\left\lceil\frac{3}{\epsilon}\right\rceil+1$. Then if $n \geq N$ then $n \geq\left\lceil\frac{3}{\epsilon}\right\rceil>\frac{3}{\epsilon}$ and so $\left|\frac{3}{n}-0\right|<\epsilon$.

Example:

Show $\left\{\frac{7}{n^{2}}-\frac{2}{n}+5\right\} \rightarrow 5$
Scratch: Observe that using the Triangle Inequality

$$
\left|\frac{7}{n^{2}}-\frac{2}{n}+5-5\right|=\left|\frac{7}{n^{2}}+\left(-\frac{2}{n}\right)\right| \leq\left|\frac{7}{n^{2}}\right|+\left|\frac{2}{n}\right| \leq\left|\frac{7}{n}\right|+\left|\frac{2}{n}\right|=\frac{9}{n}
$$

Since $\frac{9}{n}<\epsilon$ iff $n>\frac{9}{\epsilon}$ we know as long as $N>\frac{9}{\epsilon}$ we're good.
Proof: Given $\epsilon>0$ let $N=\left\lceil\frac{9}{\epsilon}\right\rceil+1$. Then if $n \geq N$ then $n \geq\left\lceil\frac{9}{\epsilon}\right\rceil+1>\frac{9}{\epsilon}$ and so

$$
\left|\frac{7}{n^{2}}-\frac{2}{n}+5-5\right|=\left|\frac{7}{n^{2}}+\left(-\frac{2}{n}\right)\right| \leq\left|\frac{7}{n^{2}}\right|+\left|\frac{2}{n}\right| \leq\left|\frac{7}{n}\right|+\left|\frac{2}{n}\right|=\frac{9}{n}<\epsilon
$$

Example:

Prove that if $\left\{a_{n}\right\} \rightarrow 2$ then $\left\{\frac{1}{a_{n}}\right\} \rightarrow \frac{1}{2}$.
The claim here is that:

$$
\forall \epsilon>0 \quad \exists N \in \mathbb{N} \text { st if } n \geq N \text { then }\left|\frac{1}{a_{n}}-\frac{1}{2}\right|<\epsilon
$$

Scratch

So given some unknown $\epsilon>0$ how can we choose $N \in \mathbb{N}$ so that if $n \geq N$ then $\left|\frac{1}{a_{n}}-\frac{1}{2}\right|<\epsilon$?
Observe that

$$
\left|\frac{1}{a_{n}}-\frac{1}{2}\right|=\left|\frac{2-a_{n}}{2 a_{n}}\right|=\left|\frac{a_{n}-2}{2 a_{n}}\right|
$$

so really we're trying to make $\left|\frac{a_{n}-2}{2 a_{n}}\right|$ small ... less than ϵ.
We know that we can make a_{n} as close to 2 as we like because $\left\{a_{n}\right\} \rightarrow 2$ so we can make the numerator as small as we like but that denominator is awkward. We know it's approaching 4 because $\left\{a_{n}\right\} \rightarrow 2$ but we don't have an inequality for it - it could be bigger or smaller than 4 for any given n.
However since $\left\{a_{n}\right\} \rightarrow 2$ we know that eventually $a_{n}>1$ because eventually $\left\{a_{n}\right\}$ is as close as we like to 2 . If $a_{n}>1$ then we'd have:

$$
\left|\frac{a_{n}-2}{2 a_{n}}\right|<\left|\frac{a_{n}-2}{2(1)}\right|=\frac{1}{2}\left|a_{n}-2\right|
$$

at this point we can make $\left|a_{n}-2\right|<2 \epsilon$ and we have what we want.
Note that we need two cutoffs here. We need N_{1} beyond which $a_{n}>1$ and N_{2} beyond which $\left|a_{n}-2\right|<2 \epsilon$.

Formal Proof

Given $\epsilon>0$:

- Choose N_{1} so that if $n \geq N_{1}$ then $\left|a_{n}-2\right|<1$ so that $a_{n}>1$.
- Choose N_{2} so that if $n \geq N_{2}$ then $\left|a_{n}-2\right|<2 \epsilon$.

Let $N=\max \left\{N_{1}, N_{2}\right\}$. Then if $n \geq N$ then we have:

$$
\left|\frac{1}{a_{n}}-\frac{1}{2}\right|=\left|\frac{2-a_{n}}{2 a_{n}}\right|=\left|\frac{a_{n}-2}{2 a_{n}}\right|<\left|\frac{a_{n}-2}{2(1)}\right|=\frac{1}{2}\left|a_{n}-2\right|<\frac{1}{2}(2 \epsilon)=\epsilon
$$

3. The Comparison Lemma

The Comparison Lemma is a very useful tool for showing convergence of one sequence based on convergence of another.
Theorem (The Comparison Lemma):
Suppose $\left\{a_{n}\right\} \rightarrow a$ and suppose $\left\{b_{n}\right\}$ is a sequence and $b \in \mathbb{R}$. Now suppose there is some $C \in \mathbb{R}^{+}$and some $N \in \mathbb{N}$ such that if $n \geq N$ then $\left|b_{n}-b\right|<C\left|a_{n}-a\right|$. Then $\left\{b_{n}\right\} \rightarrow b$.
Intuition: We need to get $\left|b_{n}-b\right|$ small. We go far enough in the sequence for the inequality to be true and far enough for $C\left|a_{n}-a\right|$ to be small enough.
Proof:
Let $\epsilon>0$. Choose N_{1} so that if $n \geq N_{1}$ then $\left|b_{n}-b\right|<C\left|a_{n}-a\right|$. Choose N_{2} so that if $n \geq N_{2}$ then $\left|a_{n}-a\right|<\frac{\epsilon}{C}$. Let $N=\max \left\{N_{1}, N_{2}\right\}$. Then if $n \geq N$ then

$$
\left|b_{n}-b\right|<C\left|a_{n}-a\right|<C\left(\frac{\epsilon}{C}\right)=\epsilon
$$

4. Theorem (Combinations):

If $\left\{a_{n}\right\} \rightarrow a$ and $\left\{b_{n}\right\} \rightarrow b$ then:
(a) $\left\{a_{n} \pm b_{n}\right\} \rightarrow a \pm b$

Proof for +: Let $\epsilon>0$. Choose N_{1} so that if $n \geq N_{1}$ then $\left|a_{n}-a\right|<\frac{\epsilon}{2}$ and choose N_{2} so that if $n \geq N_{2}$ then $\left|b_{n}-b\right|<\frac{\epsilon}{2}$. Let $N=\max \left\{N_{1}, N_{2}\right\}$ then if $n \geq N$ then

$$
\left|\left(a_{n}+b_{n}\right)-(a+b)\right|=\left|a_{n}-a+b_{n}-b\right| \leq\left|a_{n}-a\right|+\left|b_{n}-b\right|<\epsilon
$$

(b) $\left\{a_{n} b_{n}\right\} \rightarrow a b$
(c) $\left\{\frac{a_{n}}{b_{n}}\right\} \rightarrow \frac{a}{b}$ provided $b \neq 0$ and $\forall n, b_{n} \neq 0$.
(d) If $p(x)$ is a polynomial then $\left\{p\left(a_{n}\right)\right\} \rightarrow p(a)$.

