Math 410 Section 2.2: Bounded, Sequential Density, Closed

1. Bounded Sequences

(a) Definition: A sequence $\left\{a_{n}\right\}$ is bounded above if there is some M with $a_{n} \leq M$ for all n.
(b) Definition: A sequence $\left\{a_{n}\right\}$ is bounded below if there is some m with $a_{n} \geq m$ for all n.
(c) Definition: A sequence is bounded if it is both bounded above and bounded below.
(d) Theorem:

If $\left\{a_{n}\right\}$ converges then it is bounded.

Intuition:

Suppose $\left\{a_{n}\right\} \rightarrow a$. We'll show $\left\{a_{n}\right\}$ is bounded above. The idea is that eventually $\left\{a_{n}\right\}$ is within 1 unit of a and hence eventually less than $a+1$. Therefore if look at how high it got before that point then it never gets above that or $a+1$.

Proof:

Since $\left\{a_{n}\right\} \rightarrow a$ there exists some N so that if $n \geq N$ then $\left|a_{n}-a\right|<1$, which tells us $a_{n}<a+1$. Let $M=\max \left\{a_{1}, a_{2}, \ldots, a_{N-1}, a+1\right\}$ then for all n we have $a_{n} \leq M$.
$\mathcal{Q E D}$
(e) Note: From here we can conclude that if $\left\{a_{n}\right\}$ is unbounded then it does not converge. Beyond that, though, nothing. For example if $\left\{a_{n}\right\}$ is bounded we cannot know if it converges or not.
2. Sequential Density
(a) Idea: Sequential density gives us a way of obtaining a sequence converging to a real number in specific circumstances.
(b) Definition: A subset $S \subseteq \mathbb{R}$ is sequentially dense if $\forall x \in \mathbb{R}$ there is a sequence $\left\{s_{n}\right\}$ in S converging to x.
(c) Theorem:

The subset $S \subseteq \mathbb{R}$ is sequentially dense iff it is dense.
Proof of \leftarrow :
Assume $S \subseteq \mathbb{R}$ is dense. We claim it is sequentially dense. Let $s \in \mathbb{R}$. For each $n \in \mathbb{N}$ pick $s_{n} \in\left(x-\frac{1}{n}, x+\frac{1}{n}\right)$ which exists because S is dense. Then since $\left|s_{n}-x\right|<\left|\frac{1}{n}-0\right|$ and since $\left\{\frac{1}{n}\right\} \rightarrow 0$ we know $\left\{s_{n}\right\} \rightarrow x$ by the Comparison Lemma.
(d) Prototypical Example: We have $\mathbb{Q} \subseteq \mathbb{R}$ is dense and hence sequentially dense. What this says is that for any real number there's a sequence of rationals which converges to it. This is fairly clear, for example $\pi=3.14159265 \ldots$ is irrational and the sequence $3,3.1,3.1,3.14,3.141,3.1415, \ldots$ converges to π.
3. Closed Sets
(a) Definition: We say $S \subseteq \mathbb{R}$ is closed if every convergent sequence in S converges to something in S.
Note: This is just saying that a sequence in S can't converge outside of S.
Example: The set $S=[10,20)$ is not closed because $\left\{20-\frac{1}{n}\right\}$ is in S but converges to 20 which is outside of S.
Example: The set $S=[0, \infty)$ is closed. To prove this suppose $\left\{s_{n}\right\}$ is in S and converges to $x \notin S$ so $x<0$. Let $\epsilon=-\frac{x}{2}$. Then there exists some $N \in \mathbb{N}$ such that if $n \geq N$ then $\left|s_{n}-x\right|<-\frac{x}{2}$. But then $s_{n}-x<-\frac{x}{2}$ and so $s_{n}<\frac{x}{2}<0$, a contradiction.
Example: The set $S=\{1\}$ (singular point) is closed because the only convergent sequence in S is the sequence $\{1\}$ which converges to $1 \in S$.
Example: The set $S=\{1,2\}$ (pair of points) is closed. The proof of this is a little tricker.
(b) Warning: The opposite of "closed" is not "open". The word "open" means something else. The opposite of "closed" is just "not closed".

