
Math 410 Section 3.1: Continuity

1. Introduction: The idea of continuity arises from the very simple question - given a function f , as x
approaches some x0 does f(x) approach f(x0)?

2. Definition: Suppose D ⊆ R and f : D → R. Here D is the domain of the function. Let x0 ∈ D.
Then we say f is continuous at x0 if whenever {xn} in D converges to x0 we have {f(xn)} converging
to f(x0).
Definition: We say that f is continuous if it is continuous at each point in D.
Note 1: What could ruin continuity at some x0? Having just one {xn} → x0 with either {f(xn)}
converging to some other y-value or not converging at all.
Note 2: Often continuity is defined with ǫ− δ and we’ll see this later. The benefit to using sequences
is that sequences give us something concrete to use in our proofs.

3. Examples:

(a) Example: Let f : R → R be defined by f(x) = x2 + 2x − 3. To show that f is continuous at
x0 = 5 we let {xn} be a sequence in D with {xn} → 5 (note {xn} is unknown and arbitrary) and
observe that

{f(xn)} = {x2

n
+ 2xn − 3} →

∗

52 + 2(5)− 3 = f(5)

Notice that ∗ is true by the polynomial property of the convergence of sequences, not because
we’re just arbitrarily plugging things in.
Note: The same argument shows that this f is continuous at every x0 ∈ R so we can say that f
is continuous.

(b) Example: Let f : R → R be defined by

f(x) =

{

1 if x < 3

2 if x ≥ 3

To show that f is not continuous at x0 = 3 observe that
{

3− 1

n

}

→ 3 but

{

f

(

3−
1

n

)}

= {1} → 1 6= f(3)

Notice that for all n we have f(3 − 1/n) = 1 because 3 − 1/n < 3. Notice also that to ruin
convergence all we needed was one sequence.
Note: This f is continuous at every other x0 ∈ R but we have to be delicate in doing so. For
example consider x0 = 5. If we take some {xn} → 5 and look at {f(xn)} we can’t easily say what
f(xn) equals because we don’t know what xn is for any n. It might be < 3 or ≥ 3. However we
know {xn} → 5 so eventually it’s arbitrarily close to 5. So choose ǫ = 1 then there exists some
N ∈ N such that if n ≥ N then |xn − 5| < 1 so that x > 3 so that f(xn) = 1 so that for n ≥ N
we have {f(xn)} = {2} → 2 = f(5).



(c) Example: Let f : R → R be defined by

f(x) =

{

1

x−5
if x 6= 5

0 if x = 5

To show that f is not continuous at x0 = 3 observe that
{

5 + 1

n

}

→ 5 but

{f(5 + 1/n)} =

{

1

5 + 1/n− 5

}

= {n}

is unbounded and hence diverges, certainly not converging to f(5) = 0.
Note: This f is continuous everywhere else but we have to be declicate in our approach just like
the previous question because an arbitrary sequence {xn} might have both xn = 5 and xn 6= 5 in
various places.

(d) Example: Let f : R − {5} → R be defined by f(x) = 1

x−5
. Then f is continuous. This might

go against intuition or might disagree with what you were taught in pre-calculus, that continuous
functions must be one continuous line. This is not the case at all. If you think that this f is not
continuous at x0 = 5 you’d be wrong(ish). The point is that x0 = 5 is not even in the domain of
f so we don’t have to worry about it at all!

4. Combinations of Functions:

(a) Theorem: Suppose f, g → D are continuous at x0 ∈ D. Then f ± g and fg are continuous at
x0. In addition if g(x) 6= 0 for all x ∈ D then f/g is continuous at x0.
Proof: These follow directly from the definition of convergence of sequences.
Theorem: Suppose f : D → R and g : U → R where f(D) ⊆ U . Suppose f is continuous at
x0 ∈ D and g is continuous at f(x0) ∈ U . then g ◦ f : D → R is continuous at x0 ∈ D.
Proof: Suppose {xn} is in D and converges to x0. By continuity of f we then have {f(xn)} →
f(x0). Then by continuity of g we then have {(g ◦ f)(xn)} = {g(f(xn))} → g(f(x0)) so that g ◦ f
is continous at x0.


