1. Introduction: The idea of continuity arises from the very simple question - given a function f, as x approaches some x_{0} does $f(x)$ approach $f\left(x_{0}\right)$?
2. Definition: Suppose $D \subseteq \mathbb{R}$ and $f: D \rightarrow \mathbb{R}$. Here D is the domain of the function. Let $x_{0} \in D$. Then we say f is continuous at x_{0} if whenever $\left\{x_{n}\right\}$ in D converges to x_{0} we have $\left\{f\left(x_{n}\right)\right\}$ converging to $f\left(x_{0}\right)$.
Definition: We say that f is continuous if it is continuous at each point in D.
Note 1: What could ruin continuity at some x_{0} ? Having just one $\left\{x_{n}\right\} \rightarrow x_{0}$ with either $\left\{f\left(x_{n}\right)\right\}$ converging to some other y-value or not converging at all.
Note 2: Often continuity is defined with $\epsilon-\delta$ and we'll see this later. The benefit to using sequences is that sequences give us something concrete to use in our proofs.

3. Examples:

(a) Example: Let $f: \mathbb{R} \rightarrow \mathbb{R}$ be defined by $f(x)=x^{2}+2 x-3$. To show that f is continuous at $x_{0}=5$ we let $\left\{x_{n}\right\}$ be a sequence in D with $\left\{x_{n}\right\} \rightarrow 5$ (note $\left\{x_{n}\right\}$ is unknown and arbitrary) and observe that

$$
\left\{f\left(x_{n}\right)\right\}=\left\{x_{n}^{2}+2 x_{n}-3\right\} \rightarrow 5^{2}+2(5)-3=f(5)
$$

Notice that $*$ is true by the polynomial property of the convergence of sequences, not because we're just arbitrarily plugging things in.
Note: The same argument shows that this f is continuous at every $x_{0} \in \mathbb{R}$ so we can say that f is continuous.
(b) Example: Let $f: \mathbb{R} \rightarrow \mathbb{R}$ be defined by

$$
f(x)= \begin{cases}1 & \text { if } x<3 \\ 2 & \text { if } x \geq 3\end{cases}
$$

To show that f is not continuous at $x_{0}=3$ observe that $\left\{3-\frac{1}{n}\right\} \rightarrow 3$ but

$$
\left\{f\left(3-\frac{1}{n}\right)\right\}=\{1\} \rightarrow 1 \neq f(3)
$$

Notice that for all n we have $f(3-1 / n)=1$ because $3-1 / n<3$. Notice also that to ruin convergence all we needed was one sequence.
Note: This f is continuous at every other $x_{0} \in \mathbb{R}$ but we have to be delicate in doing so. For example consider $x_{0}=5$. If we take some $\left\{x_{n}\right\} \rightarrow 5$ and look at $\left\{f\left(x_{n}\right)\right\}$ we can't easily say what $f\left(x_{n}\right)$ equals because we don't know what x_{n} is for any n. It might be <3 or ≥ 3. However we know $\left\{x_{n}\right\} \rightarrow 5$ so eventually it's arbitrarily close to 5 . So choose $\epsilon=1$ then there exists some $N \in \mathbb{N}$ such that if $n \geq N$ then $\left|x_{n}-5\right|<1$ so that $x>3$ so that $f\left(x_{n}\right)=1$ so that for $n \geq N$ we have $\left\{f\left(x_{n}\right)\right\}=\{2\} \rightarrow 2=f(5)$.
(c) Example: Let $f: \mathbb{R} \rightarrow \mathbb{R}$ be defined by

$$
f(x)= \begin{cases}\frac{1}{x-5} & \text { if } x \neq 5 \\ 0 & \text { if } x=5\end{cases}
$$

To show that f is not continuous at $x_{0}=3$ observe that $\left\{5+\frac{1}{n}\right\} \rightarrow 5$ but

$$
\{f(5+1 / n)\}=\left\{\frac{1}{5+1 / n-5}\right\}=\{n\}
$$

is unbounded and hence diverges, certainly not converging to $f(5)=0$.
Note: This f is continuous everywhere else but we have to be declicate in our approach just like the previous question because an arbitrary sequence $\left\{x_{n}\right\}$ might have both $x_{n}=5$ and $x_{n} \neq 5$ in various places.
(d) Example: Let $f: \mathbb{R}-\{5\} \rightarrow \mathbb{R}$ be defined by $f(x)=\frac{1}{x-5}$. Then f is continuous. This might go against intuition or might disagree with what you were taught in pre-calculus, that continuous functions must be one continuous line. This is not the case at all. If you think that this f is not continuous at $x_{0}=5$ you'd be wrong(ish). The point is that $x_{0}=5$ is not even in the domain of f so we don't have to worry about it at all!

4. Combinations of Functions:

(a) Theorem: Suppose $f, g \rightarrow D$ are continuous at $x_{0} \in D$. Then $f \pm g$ and $f g$ are continuous at x_{0}. In addition if $g(x) \neq 0$ for all $x \in D$ then f / g is continuous at x_{0}.
Proof: These follow directly from the definition of convergence of sequences.
Theorem: Suppose $f: D \rightarrow \mathbb{R}$ and $g: U \rightarrow \mathbb{R}$ where $f(D) \subseteq U$. Suppose f is continuous at $x_{0} \in D$ and g is continuous at $f\left(x_{0}\right) \in U$. then $g \circ f: D \rightarrow \mathbb{R}$ is continuous at $x_{0} \in D$.
Proof: Suppose $\left\{x_{n}\right\}$ is in D and converges to x_{0}. By continuity of f we then have $\left\{f\left(x_{n}\right)\right\} \rightarrow$ $f\left(x_{0}\right)$. Then by continuity of g we then have $\left\{(g \circ f)\left(x_{n}\right)\right\}=\left\{g\left(f\left(x_{n}\right)\right)\right\} \rightarrow g\left(f\left(x_{0}\right)\right)$ so that $g \circ f$ is continous at x_{0}.

