
Math 410 Section 3.2: The Extreme Value Theorem

1. Introduction: The Extreme Value Theorem is one of the two big theorems that emerge from having
continuity. The other is the Intermediate Value Theorem.

2. Definition: We say a function f : D → R attains a maximum value provided that f(D) has a
maximum, meaning ∃x0 ∈ D such that ∀x ∈ D, f(x0) ≥ f(x). Such an x0 is a maximizer of f .
Likewise for a minimum value.
Note: This is not the same as f(D) being bounded.
Example: The function f : [−1, 4] → R given by f(x) = 3 − x2 has a maximum value of 3 with
maximizer x0 = 0 and has a minimum value of −13 with minimizer x0 = 4.
Example: The function f : (0, 5] → R given by f(x) = x has a maximum value of 5 with maximizer
x0 = 5 but has no minimum value. Note however that f(D) is bounded below.
Example: The function f : [0, 5] → R given by

f(x) =

{

1
x(x−5) if x 6= 0, 5

0 if x = 0, 5

has neither a maximum value nor minimum value.

3. Here is the maximum version of the Extreme Value Theorem. The minimum version can be proved
either by adjusting this proof or by applying the proof to −f(x).

(a) Lemma: Suppose f : D → R is continuous and D is closed and bounded, then f(D) is bounded
above.
Proof: Suppose not. Then for all n ∈ N there is some xn ∈ D with f(xn) > n. From here
we get a sequence {xn} By sequential compactness choose a subsequence {xni

} → x0 ∈ D (note
n1 < n2 < n3 < ... are all integers). By continuity {f(xni

)} → f(x0) but this means that {f(xni
)}

is bounded which contradicts the fact that f(xni
) > ni and {ni} is an increasing and unbounded

sequence of integers.

QED

(b) Theorem (Extreme Value Theorem): Suppose f : D → R is continuous and D is closed and
bounded. Then f attains both a maximum and minimum value.
Proof: By the lemma, f(D) is bounded above. Let M = sup(f(D)). We need to find some
x0 ∈ D with f(x0) = M .
For each n ∈ N the value M − 1/n is not an upper bound for f(D) and so there exists some
xn ∈ D with f(xn) > M − 1/n. In addition f(xn) ≤ M < M + 1/n and so we have M − 1/n <
f(xn) < M + 1/n or |f(xn)−M | < 1|1/n− 0| and so {f(xn)} → M by the Comparison Lemma.
By sequential compactness choose a subsequence {xni

} → x0 ∈ D. Since {f(xni
)} is a subsequence

of {f(xn)} we also have {f(xni
)} → M but by continuity {f(xni

)} → f(x0). Thus f(x0) = M .

QED


