- 1. **Introduction:** The Extreme Value Theorem is one of the two big theorems that emerge from having continuity. The other is the Intermediate Value Theorem.
- 2. Definition: We say a function $f: D \to \mathbb{R}$ attains a maximum value provided that f(D) has a maximum, meaning $\exists x_0 \in D$ such that $\forall x \in D, f(x_0) \geq f(x)$. Such an x_0 is a maximizer of f. Likewise for a minimum value.

Note: This is not the same as f(D) being bounded.

Example: The function $f : [-1,4] \to \mathbb{R}$ given by $f(x) = 3 - x^2$ has a maximum value of 3 with maximizer $x_0 = 0$ and has a minimum value of -13 with minimizer $x_0 = 4$.

Example: The function $f: (0,5] \to \mathbb{R}$ given by f(x) = x has a maximum value of 5 with maximizer $x_0 = 5$ but has no minimum value. Note however that f(D) is bounded below.

Example: The function $f: [0,5] \to \mathbb{R}$ given by

$$f(x) = \begin{cases} \frac{1}{x(x-5)} & \text{if } x \neq 0, 5\\ 0 & \text{if } x = 0, 5 \end{cases}$$

has neither a maximum value nor minimum value.

- 3. Here is the maximum version of the Extreme Value Theorem. The minimum version can be proved either by adjusting this proof or by applying the proof to -f(x).
 - (a) **Lemma:** Suppose $f: D \to \mathbb{R}$ is continuous and D is closed and bounded, then f(D) is bounded above.

Proof: Suppose not. Then for all $n \in \mathbb{N}$ there is some $x_n \in D$ with $f(x_n) > n$. From here we get a sequence $\{x_n\}$ By sequential compactness choose a subsequence $\{x_{n_i}\} \to x_0 \in D$ (note $n_1 < n_2 < n_3 < \dots$ are all integers). By continuity $\{f(x_{n_i})\} \to f(x_0)$ but this means that $\{f(x_{n_i})\}$ is bounded which contradicts the fact that $f(x_{n_i}) > n_i$ and $\{n_i\}$ is an increasing and unbounded sequence of integers.

(b) **Theorem (Extreme Value Theorem):** Suppose $f : D \to \mathbb{R}$ is continuous and D is closed and bounded. Then f attains both a maximum and minimum value.

Proof: By the lemma, f(D) is bounded above. Let $M = \sup(f(D))$. We need to find some $x_0 \in D$ with $f(x_0) = M$.

For each $n \in \mathbb{N}$ the value M - 1/n is not an upper bound for f(D) and so there exists some $x_n \in D$ with $f(x_n) > M - 1/n$. In addition $f(x_n) \le M < M + 1/n$ and so we have $M - 1/n < f(x_n) < M + 1/n$ or $|f(x_n) - M| < 1|1/n - 0|$ and so $\{f(x_n)\} \to M$ by the Comparison Lemma. By sequential compactness choose a subsequence $\{x_{n_i}\} \to x_0 \in D$. Since $\{f(x_{n_i})\}$ is a subsequence of $\{f(x_n)\}$ we also have $\{f(x_{n_i})\} \to M$ but by continuity $\{f(x_{n_i})\} \to f(x_0) = M$.

QED