1. **Intermediate Value Theorem:** Suppose $f:[a,b] \to \mathbb{R}$ is continuous and c is strictly between f(a) and f(b) then there exists some $x_0 \in (a,b)$ such that $f(x_0) = c$.

Proof: Note that if f(a) = f(b) then there is no such c so we only need to consider f(a) < c < f(b) and f(a) > c > f(b). Look at the case f(a) < c < f(b).

We're going to use the Bisection Method to construct two sequences as follows:

Define $a_1 = a$ and $b_1 = b$. Then look at $\frac{a_1 + b_1}{2}$ (the midpoint) and check:

- If $f(\frac{a_1+b_1}{2}) \le c$ define $a_2 = \frac{a_1+b_1}{2}$ and $b_2 = b_1$.
- If $f(\frac{a_1+b_1}{2}) > c$ define $a_2 = a_1$ and $b_2 = \frac{a_1+b_1}{2}$.

We then repeat the procedure looking at the midpoint of $[a_2, b_2]$ and defining a_3 and b_3 accordingly and so on, to define sequences $\{a_n\}$ and $\{b_n\}$.

Observe that $\{a_n\}$ is monotone increasing and bounded above by b and $\{b_n\}$ is monotone decreasing and bounded below by a. It follows that both converge. Moreover since

$$\frac{b_n - a_n}{2} = \frac{1}{2^n}(b - a)$$

we know that the difference converges to 0 and so they both converge to the same value, call it x_0 . That is, $\{a_n\} \to x_0$ and $\{b_n\} \to x_0$. We then claim that $f(x_0) = c$.

From continuity we have $\{f(a_n)\} \to f(x_0)$ and $\{f(b_n)\} \to f(x_0)$ and since for all n we have $f(a_n) \le c$ we must have $f(x_0) \le c$ and since for all n we have $f(b_n) > c$ we must have $f(x_0) \ge c$.

Thus $f(x_0) = c$.

The proof for f(a) > c > f(b) is similar.

QED

2. Examples:

Example: Consider $f:[1,5] \to \mathbb{R}$ given by $f(x) = x^2 + 4x - \frac{1}{x}$. Observe that f(1) = 4 and f(5) = 44.8. Since c = 10 is strictly between 4 and 44.8 we know there is some $x_0 \in (1,5)$ with $f(x_0) = 10$.