1. Intermediate Value Theorem: Suppose $f:[a, b] \rightarrow \mathbb{R}$ is continuous and c is strictly between $f(a)$ and $f(b)$ then there exists some $x_{0} \in(a, b)$ such that $f\left(x_{0}\right)=c$.
Proof: Note that if $f(a)=f(b)$ then there is no such c so we only need to consider $f(a)<c<f(b)$ and $f(a)>c>f(b)$. Look at the case $f(a)<c<f(b)$.
We're going to use the Bisection Method to construct two sequences as follows:
Define $a_{1}=a$ and $b_{1}=b$. Then look at $\frac{a_{1}+b_{1}}{2}$ (the midpoint) and check:

- If $f\left(\frac{a_{1}+b_{1}}{2}\right) \leq c$ define $a_{2}=\frac{a_{1}+b_{1}}{2}$ and $b_{2}=b_{1}$.
- If $f\left(\frac{a_{1}+b_{1}}{2}\right)>c$ define $a_{2}=a_{1}$ and $b_{2}=\frac{a_{1}+b_{1}}{2}$.

We then repeat the procedure looking at the midpoint of $\left[a_{2}, b_{2}\right]$ and defining a_{3} and b_{3} accordingly and so on, to define sequences $\left\{a_{n}\right\}$ and $\left\{b_{n}\right\}$.
Observe that $\left\{a_{n}\right\}$ is monotone increasing and bounded above by b and $\left\{b_{n}\right\}$ is monotone decreasing and bounded below by a. It follows that both converge. Moreover since

$$
\frac{b_{n}-a_{n}}{2}=\frac{1}{2^{n}}(b-a)
$$

we know that the difference converges to 0 and so they both converge to the same value, call it x_{0}. That is, $\left\{a_{n}\right\} \rightarrow x_{0}$ and $\left\{b_{n}\right\} \rightarrow x_{0}$. We then claim that $f\left(x_{0}\right)=c$.
From continuity we have $\left\{f\left(a_{n}\right)\right\} \rightarrow f\left(x_{0}\right)$ and $\left\{f\left(b_{n}\right)\right\} \rightarrow f\left(x_{0}\right)$ and since for all n we have $f\left(a_{n}\right) \leq c$ we must have $f\left(x_{0}\right) \leq c$ and since for all n we have $f\left(b_{n}\right)>c$ we must have $f\left(x_{0}\right) \geq c$.
Thus $f\left(x_{0}\right)=c$.
The proof for $f(a)>c>f(b)$ is similar.

2. Examples:

Example: Consider $f:[1,5] \rightarrow \mathbb{R}$ given by $f(x)=x^{2}+4 x-\frac{1}{x}$. Observe that $f(1)=4$ and $f(5)=44.8$. Since $c=10$ is strictly between 4 and 44.8 we know there is some $x_{0} \in(1,5)$ with $f\left(x_{0}\right)=10$.

