Math 410 Section 3.4: Uniform Continuity

1. Intro: The idea of uniform continuity is to present a stronger version of continuity which will be
needed for some theorems. Continuity begins with a certain xy and asks what happens if some sequence
approaches that xo whereas uniform continuity ask what happens if two sequences approach each other.

2. Definition: A function f : D — R is uniformly continuous if whenever {u,} and {v,} are sequences
in D with {u,, —v,} — 0 we must have {f(u,) — f(vn)} — 0.
Note: Uniform continuity is defined on the domain D, not at a point. It doesn’t make sense to say
“uniformly continuous at a point”.
Note: There is no requirement that the sequences {u,} and {v,} converge, just that they get close to
one another as n — co.

3. Examples:

(a)

(b)

Example: The function f : R — R given by f(x) = 3z is uniformly continuous. To see this
suppose {uy, } and {v, } are in R and satisfy {u, —v,} — 0. Then {f(un)—f(vn)} = {3un—3v,} —
3(0) = 0.

Example: The function f : (2,3) — R given by f(x) = % is uniformly continuous. To see this
suppose {u,} and {v,} are in R and satisfy {u,, —v,} — 0. Noting that for all n we have u,, > 2
and v, > 2 we see that
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and so {f(un) — f(vn)} — 0 by the Comparison Lemma.

Example: The function f : R — R given by f(x) = 22 is not uniformly continuous. Consider

the sequences {u,} = {n+ 1/n} and {v,} = {n}. Observe that {u,, —v,} = {1/n} — 0 but
{f(un) = f(oa)} = {f(n+1/n) = f(n)} = {n* + 2+ 1/n* —=n?} = {2+ 1/n*} = 240

Example: The function f : (0,2) — R given by f(z) = 1/z is not uniformly continuous. Consider
the sequences {u,} = 1/n and {v,} = 2/n. Observe that {u, —v,} = {—1/n} = 0 but

{f(un) = flon)} ={f(1/n) = f(2/n)} = {n/1 = n/2} = {n/2} /0

4. Theorems

(a)

Theorem: If f: D — R is uniformly continuous then f is continuous.
Proof: Let 29 € D and let {x,} be a sequence in D converging to zg. Since {x,} — o we have
{z,, — 20} — 0 and so by uniform continuity (treating zo as a constant sequence {zg}) we have
{f(zn) — f(z0)} — 0 and hence {f(z)} = f(z0).

QED

Note: The reverse is not true. A function may be continuous but not uniformly continuous.
However we do get the following:



(b) Theorem: If f : D — R is continuous and D is closed and bounded then f is uniformly
continuous.
Proof: Suppose {u,} and {v,} are sequences in D satisfying {u,, — v,} — 0. Assume by way of
contradiction that {f(u,) — f(vn)} # 0.
This means that there is some e > 0 such that for all N € N there is some n > N with |f(u,) —
fvn)| > e
Define a collection of indices as follows:
e Choose n; > N =1 so that |f(un,) — f(vn, )| > €
e Choose ng > N =nj + 1 so that |f(un,) — f(vn,)] >
e Choose ng > N =ng + 1 so that |f(un,) — f(vngy)] >
e And so on.
The result is a subsequence { f(un,) — f(vn, )} such that for all n; we have |f(un, ) — f(vn, )| > €.
Next by sequential compactness we take another subsequence of {u,, }, one that converges to some
ug € D. In order to avoid notation overload we’ll call this {uy, } as well. This new subsequence
satisfies {un, } — uo € [a,b]. Then since {uy,, — vy, } — 0 we know {v,, } — ug too and so by
continuity {f(un, )} = f(uo) and {f(vn,)} — f(uo) and so {f(un,)—f(vn,)} = f(uo)—f(ug) =0
which contradicts the fact that for all n we have |f(uy, ) — f(vn, )] > €

QED



