
Math 410 Section 3.4: Uniform Continuity

1. Intro: The idea of uniform continuity is to present a stronger version of continuity which will be
needed for some theorems. Continuity begins with a certain x0 and asks what happens if some sequence
approaches that x0 whereas uniform continuity ask what happens if two sequences approach each other.

2. Definition: A function f : D → R is uniformly continuous if whenever {un} and {vn} are sequences
in D with {un − vn} → 0 we must have {f(un)− f(vn)} → 0.
Note: Uniform continuity is defined on the domain D, not at a point. It doesn’t make sense to say
“uniformly continuous at a point”.
Note: There is no requirement that the sequences {un} and {vn} converge, just that they get close to
one another as n → ∞.

3. Examples:

(a) Example: The function f : R → R given by f(x) = 3x is uniformly continuous. To see this
suppose {un} and {vn} are in R and satisfy {un−vn} → 0. Then {f(un)−f(vn)} = {3un−3vn} →
3(0) = 0.

(b) Example: The function f : (2, 3) → R given by f(x) = 1

x
is uniformly continuous. To see this

suppose {un} and {vn} are in R and satisfy {un − vn} → 0. Noting that for all n we have un > 2
and vn > 2 we see that
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and so {f(un)− f(vn)} → 0 by the Comparison Lemma.

(c) Example: The function f : R → R given by f(x) = x2 is not uniformly continuous. Consider
the sequences {un} = {n+ 1/n} and {vn} = {n}. Observe that {un − vn} = {1/n} → 0 but

{f(un)− f(vn)} = {f(n+ 1/n)− f(n)} = {n2 + 2 + 1/n2 − n2} = {2 + 1/n2} → 2 6= 0

(d) Example: The function f : (0, 2) → R given by f(x) = 1/x is not uniformly continuous. Consider
the sequences {un} = 1/n and {vn} = 2/n. Observe that {un − vn} = {−1/n} → 0 but

{f(un)− f(vn)} = {f(1/n)− f(2/n)} = {n/1− n/2} = {n/2} 6→ 0

4. Theorems

(a) Theorem: If f : D → R is uniformly continuous then f is continuous.
Proof: Let x0 ∈ D and let {xn} be a sequence in D converging to x0. Since {xn} → x0 we have
{xn − x0} → 0 and so by uniform continuity (treating x0 as a constant sequence {x0}) we have
{f(xn)− f(x0)} → 0 and hence {f(x)} → f(x0).

QED

Note: The reverse is not true. A function may be continuous but not uniformly continuous.
However we do get the following:



(b) Theorem: If f : D → R is continuous and D is closed and bounded then f is uniformly
continuous.
Proof: Suppose {un} and {vn} are sequences in D satisfying {un − vn} → 0. Assume by way of
contradiction that {f(un)− f(vn)} 6→ 0.
This means that there is some ǫ > 0 such that for all N ∈ N there is some n ≥ N with |f(un)−
f(vn)| ≥ ǫ.
Define a collection of indices as follows:

• Choose n1 ≥ N = 1 so that |f(un1
)− f(vn1

)| ≥ ǫ.

• Choose n2 ≥ N = n1 + 1 so that |f(un2
)− f(vn2

)| ≥ ǫ.

• Choose n3 ≥ N = n2 + 1 so that |f(un3
)− f(vn3

)| ≥ ǫ.

• And so on.

The result is a subsequence {f(unk
)− f(vnk

)} such that for all nk we have |f(unk
)− f(vnk

)| ≥ ǫ.
Next by sequential compactness we take another subsequence of {unk

}, one that converges to some
u0 ∈ D. In order to avoid notation overload we’ll call this {unk

} as well. This new subsequence
satisfies {unk

} → u0 ∈ [a, b]. Then since {unk
− vnk

} → 0 we know {vnk
} → u0 too and so by

continuity {f(unk
)} → f(u0) and {f(vnk

)} → f(u0) and so {f(unk
)−f(vnk

)} → f(u0)−f(u0) = 0
which contradicts the fact that for all n we have |f(unk

)− f(vnk
)| ≥ ǫ.

QED


