Math 410 Section 3.5: The $\epsilon-\delta$ Criterion for Continuity

1. Intro: This representation of continuity is very often used as an alternate definition.

There are actually two such criteria; One matches continuity and the other matches uniform continuity.
2. (a) Definition: We say that $f: D \rightarrow \mathbb{R}$ satisfies the $\epsilon-\delta$ criterion at $x_{0} \in D$ if:

$$
\forall \epsilon>0, \exists \delta>0 \text { st } \forall x \in D \text { if }\left|x-x_{0}\right|<\delta \text { then }\left|f(x)-f\left(x_{0}\right)\right|<\epsilon
$$

(b) Intuition: The idea is that we can make $f(x)$ arbitrarily close to $f\left(x_{0}\right)$ by making x appropriately close to x_{0}.
(c) Examples:
i. Example: Consider $f: \mathbb{R} \rightarrow \mathbb{R}$ by $f(x)=3 x$ at $x_{0}=2$. Because the function is a line with slope 3 we can see that for the $f(x)$-values to be within ϵ of $f(2)$ we must have the x-values within $\epsilon / 3$ of 2 . This is borne out in the proof:

Formal Proof: Suppose $\epsilon>0$. Let $\delta=\epsilon / 3$. Then if $|x-2|<\epsilon / 3$ then

$$
|f(x)-f(2)|=|3 x-6|=3|x-2|<3(\epsilon / 3)=\epsilon
$$

ii. Example: Consider $f: \mathbb{R} \rightarrow \mathbb{R}$ by $f(x)=x^{2}$ at $x_{0}=2$. This isn't as nice as the previous problem because the slope is not constant. Instead the goal is, given $\epsilon>0$, to choose δ so that if $|x-2|<\delta$ then $\left|x^{2}-4\right|<\epsilon$. We can see that $\left|x^{2}-4\right|=|(x+2)(x-2)|$ and we can make $|x-2|$ small but how about $|x+2|$? Well since we can make x close to 2 we can certainly force an upper bound for $|x+2|$ by choosing an appropriate δ. For example suppose $\delta \leq 1$, then if $|x-2|<\delta \leq 1$ then $-1<x-2<1$ and so $1<x+2<5$ and so $|x+2|<5$. If this is the case then $|(x+2)(x-2)|<5|x-2|$ and then to make $5|x-2|<\epsilon$ we just make $|x-2|<\epsilon / 5$.

Formal Proof: Suppose $\epsilon>0$. Let $\delta=\min \{1, \epsilon / 5\}$. Then if $|x-2|<\delta$ then

$$
\left|x^{2}-4\right|=|(x+2)(x-2)|<5|x-2|<5(\epsilon / 5)=\epsilon
$$

(d) Theorem: Given $f: D \rightarrow \mathbb{R}$ and $x_{0} \in D, f$ is continuous at D iff f satisfies the $\epsilon-\delta$ criterion at x_{0}.
Proof of \Longrightarrow : Assume that f is continuous at $x_{0} \in D$. We claim that f satisfies the $\epsilon-\delta$ criterion at x_{0}. Suppose not, meaning that:

$$
\exists \epsilon>0, \forall \delta>0, \exists x \in D \text { with }\left|x-x_{0}\right|<\delta \text { and }\left|f(x)-f\left(x_{0}\right)\right| \geq \epsilon .
$$

Let $\epsilon_{0}>0$ be this ϵ. Then for each $n \in \mathbb{N}$ for $\delta=1 / n$ this give us $x_{n} \in D$ with $\left|x_{n}-x_{0}\right|<1 / n$ and $\left|f\left(x_{n}\right)-f\left(x_{0}\right)\right| \geq \epsilon_{0}>0$.
We then have $\left\{x_{n}\right\} \rightarrow x_{0}$ by the Comparison Lemma and so by continuity we have $\left\{f\left(x_{n}\right)\right\} \rightarrow f\left(x_{0}\right)$ and so $\left\{f\left(x_{n}\right)-f\left(x_{0}\right)\right\} \rightarrow 0$. but this contradicts $\left|f\left(x_{n}\right)-f\left(x_{0}\right)\right| \geq$ $\epsilon_{0}>0$ (since this is true for all x).
Proof of \Longleftarrow : Assume that f satisfies the $\epsilon-\delta$ criterion at x_{0}. We claim that f is continuous at x_{0}. Suppose $\left\{x_{n}\right\} \rightarrow x_{0}$. We claim $\left\{f\left(x_{n}\right)\right\} \rightarrow f\left(x_{0}\right)$. Let $\epsilon>0$. Using the $\epsilon-\delta$ criterion choose the corresponding δ. Since $\left\{x_{n}\right\} \rightarrow x_{0}$ there is some N such that if $n \geq N$ then $\left|x_{n}-x_{0}\right|<\delta$ and then $\left|x_{n}-x_{0}\right|<\delta$ implies $\left|f\left(x_{n}\right)-f\left(x_{0}\right)\right|<\epsilon$.
$\mathcal{Q E D}$
3. (a) Definition: We say that $f: D \rightarrow \mathbb{R}$ satisfies the $\epsilon-\delta$ criterion on D if:

$$
\forall \epsilon>0, \exists \delta>0 \text { st } \forall u, v \in D \text { if }|u-v|<\delta \text { then }|f(u)-f(v)|<\epsilon
$$

(b) Theorem: Given $f: D \rightarrow \mathbb{R} . f$ is uniformly continuous on D iff f satisfies the $\epsilon-\delta$ criterion on D.
Proof: Omit.

