Math 410 Section 3.6: Images and Inverses, Monotone Functions

1. Intro: Monotone function are special in several regards.
2. Definitions
(a) Definition: The function $f: D \rightarrow \mathbb{R}$ is (monotonically, monotone) increasing if $\forall u, v \in D$ with $u<v$ we have $f(u) \leq f(v)$.
(b) Definition: The function $f: D \rightarrow \mathbb{R}$ is (monotonically, monotone) decreasing if $\forall u, v \in$ D with $u<v$ we have $f(u) \geq f(v)$.
(c) Definition: A function is monotone if it is either.
(d) Definition: We say "strictly" if \leq becomes $<$ and \geq becomes $>$.
3. The first interesting thing that arises is a theorem that actually proves continuity. First just a definition to clear something up.
(a) Definition: We say that $T \subseteq \mathbb{R}$ is an interval if whenever $u, v \in T$ we also have $[u, v] \in T$. For example $[2,3)$ and $(-\infty, 10]$ are intervals but $[2,3] \cup[4,5]$ and \mathbb{Q} and $\{2,3\}$ are not.
(b) Theorem: Suppose $f: D \rightarrow \mathbb{R}$ is monotone. If $f(D)$ is an interval then f is continuous. Intuition: The idea here is that for example f might be increasing and if the range is an interval then f can't jump vertically at all (ruining continuity) without jumping horizontally (which doesn't ruin continuity).
Proof: The proof is fairly technical and omitted for now.
(c) Corollary: Suppose I is an interval and $f: I \rightarrow \mathbb{R}$ is monotone. Then f is continuous iff $f(I)$ is an interval.
Proof: If $f(I)$ is an interval then apply the previous theorem. If f is continuous then apply the IVT. This takes a few steps; try it!
4. The second thing is related to inverses of functions.
(a) Definition: A function $f: D \rightarrow \mathbb{R}$ is said to be one-to-one (1-1 or injective) if $\forall y \in f(D)$ there is a unique $x \in D$ such that $f(x)=y$.
(b) Note: A more standard way of understanding this is that a function is one-to-one if $f\left(x_{1}\right)=f\left(x_{2}\right)$ implies $x_{1}=x_{2}$.
(c) Definition: If $f: D \rightarrow \mathbb{R}$ is 1-1 then we can define the inverse function $f^{-1}: f(D) \rightarrow D$ by taking $f^{-1}(y)$ to be the unique x with $f(x)=y$.
Notice that $f^{-1}(f(x))=x$ for all $x \in D$ and $f\left(f^{-1}(y)\right)=y$ for all $y \in f(D)$.
(d) Theorem: If $f: D \rightarrow \mathbb{R}$ is strictly monotone then f is $1-1$ and $f^{-} 1$ is also strictly monotone.
Proof: Easy. Try it!
(e) Theorem: Suppose I is an interval and $f: I \rightarrow \mathbb{R}$ is strictly monotone. Then f^{-1} : $f(I) \rightarrow I$ is continuous.
Proof: Since f is strictly monotone so is f^{-1} and so by the above Theorem since $f^{-1}(f(I))=I$ is an interval f^{-1} is continouous.
$\mathcal{Q E D}$
(f) Use: Notice that we know that $f:[0, \infty) \rightarrow \mathbb{R}$ defined by $f(x)=x^{2}$ is strictly monotone. Noting that $f([0, \infty))=[0, \infty)$ It follows that the inverse function $f^{-1}:[0, \infty) \rightarrow[0, \infty)$ denoted $f^{-1}(x)=x^{1 / 2}$ is continuous.
A similary argument can be made for x^{n} for any $n \in \mathbb{N}$ and then composition can give us continuity for functions of the form $x^{n / m}$ for $n, m \in \mathbb{N}$.
