- 1. Intro: Currently we've only encountered limits of sequences, but not of functions. These are classically mentioned in Calculus 1 so let's address them formally.
- 2. Definition and Examples of Limit Points
 - (a) **Definition:** For a set $D \subseteq \mathbb{R}$ we say that $x_0 \in \mathbb{R}$ is al limit point for D if there is some sequence in $D \{x_0\}$ which converges to x_0 . Note that x_0 itself doesn't have to be in D and note that the sequence itself can't touch x_0 but must just converge to it.
 - (b) **Example:** $x_0 = 2$ is a limit point for (2, 4) because $\{2 + 1/n\}$ is in (2, 4) and converges to 2.
 - (c) **Example:** Every $x_0 \in \mathbb{R}$ is a limit point for \mathbb{Q} because \mathbb{Q} is sequentially dense.

3. Definition and Examples of Limits of Functions

(a) **Definition:** Suppose $f: D \to \mathbb{R}$ and $x_0 \in \mathbb{R}$ is a limit point for D. We say that

$$\lim_{x \to x_0} f(x) = L$$

if whenever $\{x_n\}$ is a sequence in $D - \{x_0\}$ converging to x_0 we have $\{f(x_n)\} \to L$.

- (b) Note: Note: x_0 has to be a limit point so at least one sequence in $D \{x_0\}$ converges to x_0 , otherwise the definition would be satisfied vacuously for every point which wasn't a limit point, for example we could define $f : [0, 2] \to \mathbb{R}$ by f(x) = 1 and say that $\lim_{x \to 10} f(x) = 34534$ and it would be true, vacuously, which is silly.
- (c) **Example:** Define $f: (0,2) \to \mathbb{R}$ by $f(x) = x^2$. Then $\lim_{x\to 2} f(x) = 4$. To see this take an arbitrary $\{x_n\}$ in $(0,2) \{2\}$ with $\{x_n\} \to 2$ and observe that

$$\{f(x_n)\} = \{x_n^2\} \to 2^2 = 4$$

(d) **Example:** Define $f : \mathbb{R} \to \mathbb{R}$ by

$$f(x) = \begin{cases} \frac{x^2 - 9}{x - 3} & \text{if } x \neq 3\\ 17 & \text{if } x = 3 \end{cases}$$

Then $\lim_{x\to 3} f(x) = 6$. To see this take an arbitrary $\{x_n\}$ in $\mathbb{R} - \{3\}$ with $\{x_n\} \to 3$ and observe that

$$\{f(x_n)\} = \left\{\frac{x_n^2 - 9}{x_n - 3}\right\} = \left\{\frac{(x_n - 3)(x_n + 3)}{x_n - 3}\right\} = \{x_n + 3\} \to 6$$

Note that $\{x_n\}$ in $\mathbb{R} - \{3\}$ is required so that $x_n \neq 3$ and we can cancel $x_n - 3 \neq 0$.

4. Combinations

- (a) **Theorem:** Suppose $f, g: D \to \mathbb{R}$ and x_0 is a limit point of D. Suppose $\lim_{x \to x_0} f(x) = A$ and $\lim_{x \to x_0} g(x) = B$, then $\lim_{x \to x_0} (f \pm g)(x) = A \pm B$ and $\lim_{x \to x_0} (fg)(x) = AB$, and provided that $g(x) \neq 0$ for all $x \in D$ and $B \neq 0$ then $\lim_{x \to x_0} \left(\frac{f}{g}\right)(x) = \frac{A}{B}$ also.
- (b) **Theorem:** Suppose all of the following are true:
 - $f: D \to \mathbb{R}$.
 - $g: U \to \mathbb{R}$ with $f(D) \subseteq U$.
 - x_0 is a limit point for D and $\lim_{x \to x_0} f(x) = y_0$.
 - y_0 is a limit point for U and $\lim_{y \to y_0} g(y) = L$.
 - $f(D \{x_0\}) \subseteq U \{y_0\}$

Then $\lim_{x \to x_0} (g \circ f)(x) = L.$