Math 410 Section 3.7: Limit Points and Limits of Functions

1. Intro: Currently we've only encountered limits of sequences, but not of functions. These are classically mentioned in Calculus 1 so let's address them formally.

2. Definition and Examples of Limit Points

(a) Definition: For a set $D \subseteq \mathbb{R}$ we say that $x_{0} \in \mathbb{R}$ is al limit point for D if there is some sequence in $D-\left\{x_{0}\right\}$ which converges to x_{0}. Note that x_{0} itself doesn't have to be in D and note that the sequence itself can't touch x_{0} but must just converge to it.
(b) Example: $x_{0}=2$ is a limit point for $(2,4)$ because $\{2+1 / n\}$ is in $(2,4)$ and converges to 2 .
(c) Example: Every $x_{0} \in \mathbb{R}$ is a limit point for \mathbb{Q} because \mathbb{Q} is sequentially dense.

3. Definition and Examples of Limits of Functions

(a) Definition: Suppose $f: D \rightarrow \mathbb{R}$ and $x_{0} \in \mathbb{R}$ is a limit point for D. We say that

$$
\lim _{x \rightarrow x_{0}} f(x)=L
$$

if whenever $\left\{x_{n}\right\}$ is a sequence in $D-\left\{x_{0}\right\}$ converging to x_{0} we have $\left\{f\left(x_{n}\right)\right\} \rightarrow L$.
(b) Note: Note: x_{0} has to be a limit point so at least one sequence in $D-\left\{x_{0}\right\}$ converges to x_{0}, otherwise the definition would be satisfied vacuously for every point which wasn't a limit point, for example we could define $f:[0,2] \rightarrow \mathbb{R}$ by $f(x)=1$ and say that $\lim _{x \rightarrow 10} f(x)=34534$ and it would be true, vacuously, which is silly.
(c) Example: Define $f:(0,2) \rightarrow \mathbb{R}$ by $f(x)=x^{2}$. Then $\lim _{x \rightarrow 2} f(x)=4$. To see this take an arbitrary $\left\{x_{n}\right\}$ in $(0,2)-\{2\}$ with $\left\{x_{n}\right\} \rightarrow 2$ and observe that

$$
\left\{f\left(x_{n}\right)\right\}=\left\{x_{n}^{2}\right\} \rightarrow 2^{2}=4
$$

(d) Example: Define $f: \mathbb{R} \rightarrow \mathbb{R}$ by

$$
f(x)= \begin{cases}\frac{x^{2}-9}{x-3} & \text { if } x \neq 3 \\ 17 & \text { if } x=3\end{cases}
$$

Then $\lim _{x \rightarrow 3} f(x)=6$. To see this take an arbitrary $\left\{x_{n}\right\}$ in $\mathbb{R}-\{3\}$ with $\left\{x_{n}\right\} \rightarrow 3$ and observe that

$$
\left\{f\left(x_{n}\right)\right\}=\left\{\frac{x_{n}^{2}-9}{x_{n}-3}\right\}=\left\{\frac{\left(x_{n}-3\right)\left(x_{n}+3\right)}{x_{n}-3}\right\}=\left\{x_{n}+3\right\} \rightarrow 6
$$

Note that $\left\{x_{n}\right\}$ in $\mathbb{R}-\{3\}$ is required so that $x_{n} \neq 3$ and we can cancel $x_{n}-3 \neq 0$.

4. Combinations

(a) Theorem: Suppose $f, g: D \rightarrow \mathbb{R}$ and x_{0} is a limit point of D. Suppose $\lim _{x \rightarrow x_{0}} f(x)=A$ and $\lim _{x \rightarrow x_{0}} g(x)=B$, then $\lim _{x \rightarrow x_{0}}(f \pm g)(x)=A \pm B$ and $\lim _{x \rightarrow x_{0}}(f g)(x)=A B$, and provided that $g(x) \neq 0$ for all $x \in D$ and $B \neq 0$ then $\lim _{x \rightarrow x_{0}}\left(\frac{f}{g}\right)(x)=\frac{A}{B}$ also.
(b) Theorem: Suppose all of the following are true:

- $f: D \rightarrow \mathbb{R}$.
- $g: U \rightarrow \mathbb{R}$ with $f(D) \subseteq U$.
- x_{0} is a limit point for D and $\lim _{x \rightarrow x_{0}} f(x)=y_{0}$.
- y_{0} is a limit point for U and $\lim _{y \rightarrow y_{0}} g(y)=L$.
- $f\left(D-\left\{x_{0}\right\}\right) \subseteq U-\left\{y_{0}\right\}$

Then $\lim _{x \rightarrow x_{0}}(g \circ f)(x)=L$.

