
Math 410 Section 4.1: Derivatives

1. Intro: The basic premise of derivatives is to investigate the slope of a function when the function
is not a line.

2. Building the Derivative

(a) Definition: Given x0 ∈ R, a neighborhood of x0 is an open interval (a, b) containing x0. We
may use ±∞ here.

(b) Secant Lines: Suppose x0 ∈ R, suppose I is a neighborhood of x0, and suppose f : I → R.
For any x ∈ I − {x0} we can draw the secant line joining the points (x0, f(x0)) and (x, f(x)).
The slope of this secant line will then equal

f(x)− f(x0)

x− x0

(c) Tangent Lines: We then investigate what happens as x gets closer to x0. In this case
the secant lines are approaching a tangent line and if the slope of the secant lines approach
something this would be the slope of the tangent line.

(d) Definition: Let I be a neighborhood of x0 ∈ I. Then f : I → R is said to be differentiable at
x0 if the limit

lim
x→x0

f(x)− f(x0)

x− x0

exists. If this limit does exist then we denote if f ′(x0).

Note: The derivative is defined in terms of the limit of a function which is in turn defined as
the limit of sequences. In other words to calculate f ′(x0) we need to calculate lim

x→x0

f(x)−f(x0)
x−x0

which means we take some arbitrary {xn} in I − {x0} with {xn} → x0 and we examine the

convergence of
{

f(xn)−f(x0)
xn−x0

}

.

(e) Definition: If f is differentiable at every point in I then we simply say f is differentiable on
I. In this case we would have some f ′(x0) for each x0 ∈ I and we usually write f ′(x) instead.

3. Examples

(a) Example: We show that f : R → R defined by f(x) = 2x + 7 is differentiable at x0 = 3. We
investigate the limit

lim
x→3

(2x+ 7)− (2(3) + 7)

x− 3

To do this we take a sequence {xn} in R− {3} with {xn} → 3 and observe that

{

(2xn + 7)− (2(3) + 7)

xn − 3

}

=

{

2(xn − 3)

xn − 3

}

= {2} → 2

and so f ′(3) = 2.

(b) Example: We show that f : R → R defined by f(x) = x2 is differentiable at x0 = 7. We
investigate the limit

lim
x→7

x2 − 72

x− 7

. To do this we take a sequence {xn} in R− {7} with {xn} → 7 and observe that

{

x2
n − 72

xn − 7

}

= {xn + 7} → 2x0

and so f ′(7) = 2(7).



(c) Example: We show that f : R → R defined by f(x) = |x| is not differentiable at x0 = 0.
Observe that {1/n} → 0 and

{

f(1/n)− f(0)

1/n− 0

}

=

{

|1/n|

1/n

}

= {1} → 1

but observe that {−1/n} → 0 and
{

f(−1/n)− f(0)

−1/n− 0

}

=

{

| − 1/n|

−1/n

}

= {−1} → −1

4. Theorems:

(a) Theorem: A similar proof to the above will show that if f(x) = mx+ b then f ′(x0) = m for
all x0 or more commonly f ′(x) = m.

(b) Theorem: A similar proof to the above will show that if f(x) = x2 then f ′(x0) = 2x0 for all
x0 or more commonly f ′(x) = 2x.

(c) Theorem: If n ∈ Z with n ≥ 0 and f : R → R is defined by f(x) = xn then f ′(x) = nxn−1.

(d) Theorem: If I is a neighborhood of x0 and f : I → R is differentiable at x0 then f is
continuous at x0.
Proof: We need to prove that for any {xn} → x0 that {f(xn)} → f(x0). To that end suppose
{xn} → x0. Now observe that for any n:

• If xn = x0 then f(xn)− f(x0) = 0

• f xn 6= x0 then f(xn)− f(x0) = (xn − x0)
(

f(xn)−f(x0)
xn−x0

)

In the first case the terms are all 0 and in the second case the terms converge to 0f ′(xn) = 0.
It follows that {f(xn)− f(x0)} → 0 and so {f(xn)} → f(x0).

(e) Theorem: Let I be a neighborhood of x0 and suppose that f, g : I → R are differentiable at
x0. Then:

i. f ± g is differentiable at x0 and (f ± g)′(x0) = f ′(x0)± g′(x0)

ii. fg is differentiable at x0 and (fg)′(x0) = f ′(x0)g(x0) + f(x0)g
′(x0)

Proof: We claim that:

lim
x→x0

(fg)(x)− (fg)(x0)

x− x0
= f ′(x0)g(x0) + f(x0)g

′(x0)

Suppose {xn} is in I − {x0} and {xn} → x0. Observe that:
{

(fg)(xn)− (fg)(x0)

xn − x0

}

=

{

f(xn)g(xn)− f(x0)g(x0)

xn − x0

}

=

{

f(xn)g(xn)− f(x0)g(xn) + f(x0)g(xn)− f(x0)g(x0)

xn − x0

}

=

{

f(xn)− f(x0)

xn − x0
g(xn) + f(x0)

g(xn)− g(x0)

xn − x0

}

and then observe that as {xn} → x0 we have:
{

f(xn)− f(x0)

xn − x0
g(xn) + f(x0)

g(xn)− g(x0)

xn − x0

}

→ f ′(x0)g(x0) + f(x0)g
′(x0)

iii. f
g
is differentiable at x0 and

(

f

g

)

′

(x0) =
f ′(x0)g(x0)− f(x0)g

′(x0)

g′(x0)2

(f) Theorem: If n ∈ Z with n < 0 and f : R → R is defined by f(x) = xn then f ′(x) = nxn−1.


