Math 410 Section 4.2: Derivatives of Inverses and Compositions

1. Derivatives of Inverses

(a) Theorem: Let I be a neighborhood of x_{0} and let $f: I \rightarrow \mathbb{R}$ be strictly monotone and continuous. Suppose f is differentiable at x_{0} and that $f^{\prime}\left(x_{0}\right) \neq 0$. Define $y_{0}=f\left(x_{0}\right)$ then $f^{-1}: f(I) \rightarrow \mathbb{R}$ is differentiable at y_{0} and

$$
\left(f^{-1}\right)^{\prime}\left(y_{0}\right)=\frac{1}{f^{\prime}\left(x_{0}\right)}
$$

Proof: By the IVT we know $f(I)$ is an interval hence a neighborhood of y_{0}. Let $\left\{y_{n}\right\}$ be a sequence in $f(I)-\left\{y_{0}\right\}$ converging to y_{0}. Thus for each n we have $y_{n}=f\left(x_{n}\right)$ for some $x_{n} \in I-\left\{x_{0}\right\}$ (missing x_{0} because f is strictly monotone).
Observe that $\left\{y_{n}\right\} \rightarrow y_{0}$ and so by continuity of f^{-1} (previous theorem - a strictly monotone function on an interval has a continuous inverse) we know that $\left\{f^{-1}\left(y_{n}\right)\right\} \rightarrow f^{-1}\left(y_{0}\right)$ which is $\left\{x_{n}\right\} \rightarrow x_{0}$ and so

$$
\left\{\frac{f^{-1}\left(y_{n}\right)-f^{-1}\left(y_{0}\right)}{y_{n}-y_{0}}\right\}=\left\{\frac{x_{n}-x_{0}}{f\left(x_{n}\right)-f\left(x_{0}\right)}\right\} \rightarrow \frac{1}{f^{\prime}\left(x_{0}\right)}
$$

(b) Theorem: For $n \in \mathbb{N}$ define $f:(0, \infty) \rightarrow \mathbb{R}$ by $f(x)=x^{1 / n}$. Then f is continuous and

$$
f^{\prime}(x)=\frac{1}{n} x^{1 / n-1}
$$

Proof: Define $g(x)=x^{n}$ and apply the above theorem to g noting that $f=g^{-1}$.

2. Derivatives of Compositions

(a) Theorem (The Chain Rule): Let I be a neighborhood of x_{0} and suppose $f: I \rightarrow \mathbb{R}$ is differentiable at x_{0}. Let J be an open neighborhood such that $f(I) \subseteq J$ and suppose that $g: J \rightarrow \mathbb{R}$ is differentiable at $f\left(x_{0}\right)$. Then $g \circ f: I \rightarrow \mathbb{R}$ is differentiable at x_{0} and

$$
(g \circ f)^{\prime}\left(x_{0}\right)=g^{\prime}\left(f\left(x_{0}\right)\right) g^{\prime}\left(x_{0}\right)
$$

Proof: Let $\left\{x_{n}\right\}$ be a sequence in $I-\left\{x_{0}\right\}$ with $\left\{x_{n}\right\} \rightarrow x_{0}$. Let's examine:

$$
\left\{\frac{g\left(f\left(x_{n}\right)\right)-g\left(f\left(x_{0}\right)\right)}{x_{n}-x_{0}}\right\}
$$

Observe that we have the following equality $A=B C$ where expression B is defined in cases according to n :

$$
\underbrace{\frac{g\left(f\left(x_{n}\right)\right)-g\left(f\left(x_{0}\right)\right)}{x_{n}-x_{0}}}_{A}=\underbrace{\left[\begin{array}{ll}
\frac{g\left(f\left(x_{n}\right)\right)-g\left(f\left(x_{0}\right)\right)}{f\left(x_{n}\right)-f\left(x_{0}\right)} & \text { if } f\left(x_{n}\right)-f\left(x_{0}\right) \neq 0 \\
g^{\prime}\left(f\left(x_{0}\right)\right) & \text { if } f\left(x_{n}\right)-f\left(x_{0}\right)=0
\end{array}\right]}_{B} \underbrace{\left[\frac{f\left(x_{n}\right)-f\left(x_{0}\right)}{x_{n}-x_{0}}\right]}_{C}
$$

The reason these are equal is:

- If $f\left(x_{n}\right)-f\left(x_{0}\right) \neq 0$ then the denominator of B and numerator of C cancel, yielding $A=B C$.
- If $f\left(x_{n}\right)-f\left(x_{0}\right)=0$ then B equals $g^{\prime}\left(f\left(x_{0}\right)\right)$ and the numerator of $C=0$ so $B C=0$ but also $g\left(f\left(x_{n}\right)\right)-g\left(f\left(x_{0}\right)\right)=0$ so $A=0$ and so $A=B C$.
Now check out the limits of each of B and C :
- For C we have $\lim _{n \rightarrow \infty} \frac{f\left(x_{n}\right)-f\left(x_{0}\right)}{x_{n}-x_{0}}=f^{\prime}\left(x_{0}\right)$ since f is differentiable at x_{0}.
- For B notice that terms with $f\left(x_{n}\right)-f\left(x_{0}\right)=0$ equal $g^{\prime}\left(f\left(x_{0}\right)\right)$ and terms with $f\left(x_{n}\right)-f\left(x_{0}\right) \neq 0$ approach $g^{\prime}\left(f\left(x_{0}\right)\right)$ because $\left\{x_{n}\right\} \rightarrow x_{0}$ along with f being continuous (since it's differentiable) implies $\left\{f\left(x_{n}\right)\right\} \rightarrow f\left(x_{0}\right)$. All together we see that the limit is $g^{\prime}\left(f\left(x_{0}\right)\right)$.
Thus all together the limit of the right side is $g^{\prime}\left(f\left(x_{0}\right)\right) f^{\prime}\left(x_{0}\right)$ and so:

$$
\left\{\frac{g\left(f\left(x_{n}\right)\right)-g\left(f\left(x_{0}\right)\right)}{x_{n}-x_{0}}\right\} \rightarrow g^{\prime}\left(f\left(x_{0}\right)\right) f^{\prime}\left(x_{0}\right)
$$

which is what we wished to prove.

