Math 410 Section 4.2: Derivatives of Inverses and Compositions

1. Derivatives of Inverses

(a) **Theorem:** Let I be a neighborhood of x_0 and let $f : I \to \mathbb{R}$ be strictly monotone and continuous. Suppose f is differentiable at x_0 and that $f'(x_0) \neq 0$. Define $y_0 = f(x_0)$ then $f^{-1}: f(I) \to \mathbb{R}$ is differentiable at y_0 and

$$(f^{-1})'(y_0) = \frac{1}{f'(x_0)}$$

Proof: By the IVT we know f(I) is an interval hence a neighborhood of y_0 . Let $\{y_n\}$ be a sequence in $f(I) - \{y_0\}$ converging to y_0 . Thus for each n we have $y_n = f(x_n)$ for some $x_n \in I - \{x_0\}$ (missing x_0 because f is strictly monotone).

Observe that $\{y_n\} \to y_0$ and so by continuity of f^{-1} (previous theorem - a strictly monotone function on an interval has a continuous inverse) we know that $\{f^{-1}(y_n)\} \to f^{-1}(y_0)$ which is $\{x_n\} \to x_0$ and so

$$\left\{\frac{f^{-1}(y_n) - f^{-1}(y_0)}{y_n - y_0}\right\} = \left\{\frac{x_n - x_0}{f(x_n) - f(x_0)}\right\} \to \frac{1}{f'(x_0)}$$

(b) **Theorem:** For $n \in \mathbb{N}$ define $f: (0, \infty) \to \mathbb{R}$ by $f(x) = x^{1/n}$. Then f is continuous and

$$f'(x) = \frac{1}{n}x^{1/n-1}$$

Proof: Define $g(x) = x^n$ and apply the above theorem to g noting that $f = g^{-1}$.

2. Derivatives of Compositions

(a) **Theorem (The Chain Rule):** Let I be a neighborhood of x_0 and suppose $f: I \to \mathbb{R}$ is differentiable at x_0 . Let J be an open neighborhood such that $f(I) \subseteq J$ and suppose that $g: J \to \mathbb{R}$ is differentiable at $f(x_0)$. Then $g \circ f: I \to \mathbb{R}$ is differentiable at x_0 and

$$(g \circ f)'(x_0) = g'(f(x_0))g'(x_0)$$

Proof: Let $\{x_n\}$ be a sequence in $I - \{x_0\}$ with $\{x_n\} \to x_0$. Let's examine:

$$\left\{\frac{g(f(x_n)) - g(f(x_0))}{x_n - x_0}\right\}$$

Observe that we have the following equality A = BC where expression B is defined in cases according to n:

$$\underbrace{\frac{g(f(x_n)) - g(f(x_0))}{x_n - x_0}}_{A} = \underbrace{\left[\begin{array}{c} \frac{g(f(x_n)) - g(f(x_0))}{f(x_n) - f(x_0)} & \text{if } f(x_n) - f(x_0) \neq 0\\ g'(f(x_0)) & \text{if } f(x_n) - f(x_0) = 0 \end{array}\right]}_{B} \underbrace{\left[\frac{f(x_n) - f(x_0)}{x_n - x_0}\right]}_{C}$$

The reason these are equal is:

- If $f(x_n) f(x_0) \neq 0$ then the denominator of B and numerator of C cancel, yielding A = BC.
- If $f(x_n) f(x_0) = 0$ then B equals $g'(f(x_0))$ and the numerator of C = 0 so BC = 0 but also $g(f(x_n)) g(f(x_0)) = 0$ so A = 0 and so A = BC.

Now check out the limits of each of B and C:

- For C we have $\lim_{n \to \infty} \frac{f(x_n) f(x_0)}{x_n x_0} = f'(x_0)$ since f is differentiable at x_0 .
- For *B* notice that terms with $f(x_n) f(x_0) = 0$ equal $g'(f(x_0))$ and terms with $f(x_n) f(x_0) \neq 0$ approach $g'(f(x_0))$ because $\{x_n\} \to x_0$ along with *f* being continuous (since it's differentiable) implies $\{f(x_n)\} \to f(x_0)$. All together we see that the limit is $g'(f(x_0))$.

Thus all together the limit of the right side is $g'(f(x_0))f'(x_0)$ and so:

$$\left\{\frac{g(f(x_n)) - g(f(x_0))}{x_n - x_0}\right\} \to g'(f(x_0))f'(x_0)$$

which is what we wished to prove.