Math 410 Section 4.3: The Mean Value Theorem and Consequences

1. The Mean Value Theorem

(a) Introduction: The MVT is far more important than you may suspect. It provided a fundamental connection between a function and its derivative and it underlies many properties of the integral. However first we needs some preliminaries.
(b) Lemma: Let I be a neighborhood of x_{0} and suppose $f: I \rightarrow \mathbb{R}$ is differentiable at x_{0}. If x_{0} is either a maximizer or minimizer for f then $f^{\prime}\left(x_{0}\right)=0$
Proof Suppose f is a maximizer. Since f is differentiable at x_{0} and since I is a neighborhood choose a sequence $\{x+1 / n\}$ for n starting large enough to be in I. we know that:

$$
\left\{\frac{f\left(x_{0}+1 / n\right)-f\left(x_{0}\right)}{x_{0}+1 / n-x_{0}}\right\} \rightarrow f^{\prime}\left(x_{0}\right)
$$

Since x_{0} is a maximizer the numerator is nonpositive and so the terms of the sequence are in $(-\infty, 0]$ which is closed we must have $f^{\prime}\left(x_{0}\right) \leq 0$. A similar argument with $\{x-1 / n\}$ shows that $f^{\prime}\left(x_{0}\right) \geq 0$ and so $f^{\prime}\left(x_{0}\right)=0$. The proof for a minimizer is similar.
(c) Rolle's Theorem: Suppose that $f:[a, b] \rightarrow \mathbb{R}$ is continuous on $[a, b]$ and differentiable on (a, b). Moreover assume $f(a)=f(b)$. Then there is a point $x_{0} \in(a, b)$ at which $f^{\prime}\left(x_{0}\right)=0$.
Proof: By the EVT we know f assumes both a maximum and a minimum. If both occur at endpoints then the function is constant and so $f^{\prime}(x)=0$ everywhere. Otherwise let x_{0} be either a maximizer or minimizer not at an endpoint then since (a, b) is a neighborhood of x_{0} the lemma tells us that $f^{\prime}\left(x_{0}\right)=0$.
(d) The Mean Value Theorem: Suppose that $f:[a, b] \rightarrow \mathbb{R}$ is continuous on $[a, b]$ and differentiable on (a, b). Then there is a point $x_{0} \in(a, b)$ at which

$$
f^{\prime}\left(x_{0}\right)=\frac{f(b)-f(a)}{b-a}
$$

Proof: Define $h(x)=f(x)-\left[\frac{f(b)-f(a)}{b-a}\right] x$. Observe that

$$
h(a)=f(a)-\left[\frac{f(b)-f(a)}{b-a}\right] a=\frac{f(a)(b-a)-a f(b)+a f(a)}{b-a}=\frac{b f(a)-a f(b)}{b-a}
$$

and

$$
h(b)=f(b)-\left[\frac{f(b)-f(a)}{b-a}\right] b=\frac{f(b)(b-a)-b f(b)+b f(a)}{b-a}=\frac{b f(a)-a f(b)}{b-a}
$$

So we can apply Rolle's Theorem to obtain a point $x_{0} \in(a, b)$ with $h^{\prime}\left(x_{0}\right)=0$. However then

$$
0=h^{\prime}\left(x_{0}\right)=f^{\prime}\left(x_{0}\right)-\left[\frac{f(b)-f(a)}{b-a}\right]
$$

and we're done.

2. Consequences

(a) The Identity Criterion Lemma: Let I be an open interval and suppose $f: I \rightarrow \mathbb{R}$ is differentiable. Then f is constant iff $f^{\prime}(x)=0$ for all $x \in I$.
Proof: If f is constant then the definition of the derivative shows that $f^{\prime}(x)=0$ for all $x \in I$.
Suppose that $f^{\prime}(x)=0$ for all $x \in I$. If f is not constant then there are $a<b$ in I with $f(a) \neq f(b)$. Since f is differentiable on I it is continuous on $[a, b]$ and differentiable on (a, b) and hence by the MVT there is some $x_{0} \in(a, b)$ with

$$
f\left(x_{0}\right)=\frac{f(b)-f(a)}{b-a} \neq 0
$$

which is a contradiction. Therefore f is constant.
(b) The Identity Criterion: Let I be an open interval and suppose $f, g: I \rightarrow \mathbb{R}$ are differentiable. Then f and g differ by a constant iff $f^{\prime}(x)=g^{\prime}(x)$ for all $x \in I$.
Proof: Define $g(x)=f(x)-g(x)$ and apply the ICL.
(c) Strict Monotonicity Criterion: Let I be an open interval and suppose $f: I \rightarrow \mathbb{R}$ is differentiable. Suppose $f^{\prime}(x)>0$ for all $x \in I$. Then f is strictly increasing. Likewise suppose $f^{\prime}(x)<0$ for all $x \in I$. Then f is strictly decreasing.
Proof: For the $f^{\prime}(x)>0$ case suppose $a<b$ are in I. Since f is differentiable on I it is continuous on $[a, b]$ and differentiable on (a, b) and hence by the MVT there is some $x_{0} \in(a, b)$ with

$$
\frac{f(b)-f(a)}{b-a}=f^{\prime}\left(x_{0}\right)>0
$$

and the result follows. The $f^{\prime}(x)<0$ case is similar.

