1. Introduction: The Cauchy MVT is a slight adaptation of the MVT which we'll use once or twice later on. It's not nearly as intuitive as the MVT however.
2. The Cauchy Mean Value Theorem: Suppose $f, g:[a, b] \rightarrow \mathbb{R}$ are continuous on $[a, b]$ and differentiable on (a, b). Moreover assume that $g^{\prime}(x) \neq 0$ for all $x \in(a, b)$. Then there is some $x_{0} \in(a, b)$ such that:

$$
\frac{f^{\prime}\left(x_{0}\right)}{g^{\prime}\left(x_{0}\right)}=\frac{f(b)-f(a)}{g(b)-g(a)}
$$

Note: The intuition here is that really we have:

$$
\frac{f^{\prime}\left(x_{0}\right)}{g^{\prime}\left(x_{0}\right)}=\frac{(f(b)-f(a)) /(b-a)}{(g(b)-g(a)) /(b-a)}
$$

so the CMVT is saying that the ratio of instantaneous slopes equals the ratio of the slopes joining the ending lines.
Proof: Define

$$
h(x)=f(x)-\left[\frac{f(b)-f(a)}{g(b)-g(a)}\right] g(x)
$$

Noting that $h(a)=h(b)$ (some algebra) we apply Rolle's Theorem to obtain $x_{0} \in(a, b)$ with:

$$
\begin{aligned}
h^{\prime}\left(x_{0}\right) & =0 \\
f^{\prime}\left(x_{0}\right)-\left[\frac{f(b)-f(a)}{g(b)-g(a)}\right] g^{\prime}\left(x_{0}\right) & =0 \\
\frac{f^{\prime}\left(x_{0}\right)}{g^{\prime}\left(x_{0}\right)} & =\frac{f(b)-f(a)}{g(b)-g(a)}
\end{aligned}
$$

3. Function Bounding Theorem: Let I be an open interval and $n \in \mathbb{N}$ and suppose that $f: I \rightarrow \mathbb{R}$ has n derivatives. Suppose also that:

$$
f\left(x_{0}\right)=f^{\prime}\left(x_{0}\right)=f^{\prime \prime}\left(x_{0}\right)=\ldots=f^{(n-1)}\left(x_{0}\right)=0
$$

Then for each $x \neq x_{0}$ in I there is some z strictly between x_{0} and x with:

$$
f(x)=\frac{f^{(n)}(z)}{n!}\left(x-x_{0}\right)^{n}
$$

Note: Loosely speaking this theorem is stating that a function is controlled by its first nonzero derivative. We'll see a specific example of this in action soon.
Proof: Define $g(x)=\left(x-x_{0}\right)^{n}$ for all $x \in I$. A quick calculation shows that

$$
g\left(x_{0}\right)=g^{\prime}\left(x_{0}\right)=\ldots=g^{(n-1)}\left(x_{0}\right)=0 \text { and } g^{(n)}\left(x_{0}\right)=n!
$$

Without loss of (much) generality assume $x_{0}<x$. Observe that:

$$
\begin{aligned}
& \frac{f(x)}{g(x)}=\frac{f(x)-f\left(x_{0}\right)}{g(x)-g\left(x_{0}\right)}=\frac{f^{\prime}\left(x_{1}\right)}{g^{\prime}\left(x_{1}\right)}=\frac{f^{\prime}\left(x_{1}\right)-f^{\prime}\left(x_{0}\right)}{g^{\prime}\left(x_{1}\right)-g^{\prime}\left(x_{0}\right)}=\frac{f^{\prime \prime}\left(x_{2}\right)}{g^{\prime}\left(x_{2}\right)}=\frac{f^{\prime \prime}\left(x_{2}\right)-f^{\prime \prime}\left(x_{0}\right)}{g^{\prime \prime}\left(x_{2}\right)-g^{\prime \prime}\left(x_{0}\right)} \\
& \quad=\ldots=\frac{f^{(n-1)}\left(x_{n-1}\right)}{g^{(n-1)}\left(x_{n-1}\right)}=\frac{f^{(n-1)}\left(x_{n-1}\right)-f^{(n-1)}\left(x_{0}\right)}{g^{(n-1)}\left(x_{n-1}\right)-g^{(n-1)}\left(x_{0}\right)}=\frac{f^{(n)}\left(x_{n}\right)}{g^{(n)}\left(x_{n}\right)}=\frac{f^{(n)}\left(x_{n}\right)}{n!}
\end{aligned}
$$

Where $x_{1} \in\left(x_{0}, x\right)$ is chosen by the CMVT applied to f and $g, x_{2} \in\left(x_{1}, x\right)$ is chosen by the CVMT applied to f^{\prime} and g^{\prime}, and so on. Letting $z=x_{n}$ we have our claim.

4. Examples

Here is an example which illustrates what the theorem tells us, followed by another which has a slight tweak.
(a) Example: Suppose $f: \mathbb{R} \rightarrow \mathbb{R}$ is such that $f(1)=0, f^{\prime}(1)=0$ and $f^{\prime \prime}(x) \leq 3$ for all x. How big could $f(5)$ possibly be?
Solution: Letting $x_{0}=1, x=5$ and $n=2$ the FBT states that there is some $z \in(1,5)$ such that

$$
f(3)=\frac{f^{\prime \prime}(z)}{2!}(5-1)^{2}=8 f^{\prime \prime}(z)
$$

Since $f^{\prime \prime}(z) \leq 3$ we then have $f(3)=8 f^{\prime \prime}(z) \leq 24$.
(b) Example: Suppose $f: \mathbb{R} \rightarrow \mathbb{R}$ is such that $f(2)=3, f^{\prime}(2)=0, f^{\prime \prime}(2)=0$ and $0.1 \leq f^{\prime \prime \prime}(x) \leq 0.12$ for all x. What are the restrictions on $f(2.7)$?
Solution: Letting $x_{0}=2, x=2.7$ and $n=3$ we notice we can't apply the FBT immediately because $f\left(x_{0}\right) \neq 0$. Define $g(x)=f(x)-3$ and notice that $g(2)=0$, $g^{\prime}(2)=0, g^{\prime \prime}(2)=0$ and $0.1 \leq g^{\prime \prime \prime}(x) \leq 0.12$ for all x so we apply the FBT to $g(x)$ instead to get some $z \in(2,2.7)$ such that

$$
g(2.7)=\frac{g^{\prime \prime \prime}(z)}{3!}(2.7-2)^{3}=\frac{343}{6000} g^{\prime \prime \prime}(z)
$$

Since $0.1 \leq g^{\prime \prime \prime}(z) \leq 0.12$ we then get

$$
(343 / 6000)(0.1) \leq g(2.7) \leq(343 / 6000)(0.12)
$$

so that

$$
(343 / 6000)(0.1) \leq f(2.7)-3 \leq(343 / 6000)(0.12)
$$

and so

$$
3+(343 / 6000)(0.1) \leq f(2.7) \leq 3+(343 / 6000)(0.12)
$$

