
Math 410 Section 4.4: The Cauchy Mean Value Theorem and Consequences

1. Introduction: The Cauchy MVT is a slight adaptation of the MVT which we’ll use once or
twice later on. It’s not nearly as intuitive as the MVT however.

2. The Cauchy Mean Value Theorem: Suppose f, g : [a, b] → R are continuous on [a, b] and
differentiable on (a, b). Moreover assume that g′(x) 6= 0 for all x ∈ (a, b). Then there is some
x0 ∈ (a, b) such that:

f ′(x0)

g′(x0)
=

f(b)− f(a)

g(b)− g(a)

Note: The intuition here is that really we have:

f ′(x0)

g′(x0)
=

(f(b)− f(a))/(b− a)

(g(b)− g(a))/(b− a)

so the CMVT is saying that the ratio of instantaneous slopes equals the ratio of the slopes
joining the ending lines.
Proof: Define

h(x) = f(x)−

[

f(b)− f(a)

g(b)− g(a)

]

g(x)

Noting that h(a) = h(b) (some algebra) we apply Rolle’s Theorem to obtain x0 ∈ (a, b) with:

h′(x0) = 0

f ′(x0)−

[

f(b)− f(a)

g(b)− g(a)

]

g′(x0) = 0

f ′(x0)

g′(x0)
=

f(b)− f(a)

g(b)− g(a)

3. Function Bounding Theorem: Let I be an open interval and n ∈ N and suppose that
f : I → R has n derivatives. Suppose also that:

f(x0) = f ′(x0) = f ′′(x0) = ... = f (n−1)(x0) = 0

Then for each x 6= x0 in I there is some z strictly between x0 and x with:

f(x) =
f (n)(z)

n!
(x− x0)

n

Note: Loosely speaking this theorem is stating that a function is controlled by its first nonzero
derivative. We’ll see a specific example of this in action soon.
Proof: Define g(x) = (x− x0)

n for all x ∈ I. A quick calculation shows that

g(x0) = g′(x0) = ... = g(n−1)(x0) = 0 and g(n)(x0) = n!

Without loss of (much) generality assume x0 < x. Observe that:

f(x)

g(x)
=

f(x)− f(x0)

g(x)− g(x0)
=

f ′(x1)

g′(x1)
=

f ′(x1)− f ′(x0)

g′(x1)− g′(x0)
=

f ′′(x2)

g′(x2)
=

f ′′(x2)− f ′′(x0)

g′′(x2)− g′′(x0)

= ... =
f (n−1)(xn−1)

g(n−1)(xn−1)
=

f (n−1)(xn−1)− f (n−1)(x0)

g(n−1)(xn−1)− g(n−1)(x0)
=

f (n)(xn)

g(n)(xn)
=

f (n)(xn)

n!

Where x1 ∈ (x0, x) is chosen by the CMVT applied to f and g, x2 ∈ (x1, x) is chosen by the
CVMT applied to f ′ and g′, and so on. Letting z = xn we have our claim.



4. Examples

Here is an example which illustrates what the theorem tells us, followed by another which has
a slight tweak.

(a) Example: Suppose f : R → R is such that f(1) = 0, f ′(1) = 0 and f ′′(x) ≤ 3 for all x.
How big could f(5) possibly be?
Solution: Letting x0 = 1, x = 5 and n = 2 the FBT states that there is some z ∈ (1, 5)
such that

f(3) =
f ′′(z)

2!
(5− 1)2 = 8f ′′(z)

Since f ′′(z) ≤ 3 we then have f(3) = 8f ′′(z) ≤ 24.

(b) Example: Suppose f : R → R is such that f(2) = 3, f ′(2) = 0, f ′′(2) = 0 and
0.1 ≤ f ′′′(x) ≤ 0.12 for all x. What are the restrictions on f(2.7)?
Solution: Letting x0 = 2, x = 2.7 and n = 3 we notice we can’t apply the FBT
immediately because f(x0) 6= 0. Define g(x) = f(x) − 3 and notice that g(2) = 0,
g′(2) = 0, g′′(2) = 0 and 0.1 ≤ g′′′(x) ≤ 0.12 for all x so we apply the FBT to g(x)
instead to get some z ∈ (2, 2.7) such that

g(2.7) =
g′′′(z)

3!
(2.7− 2)3 =

343

6000
g′′′(z)

Since 0.1 ≤ g′′′(z) ≤ 0.12 we then get

(343/6000)(0.1) ≤ g(2.7) ≤ (343/6000)(0.12)

so that
(343/6000)(0.1) ≤ f(2.7)− 3 ≤ (343/6000)(0.12)

and so
3 + (343/6000)(0.1) ≤ f(2.7) ≤ 3 + (343/6000)(0.12)


