Math 410 Section 6.3: Additivity, Monotonicity, Linearity

- 1. Introduction: Just like with differentiability it's helpful to establish rules for when functions are and are not integrable.
- 2. Lemma: Suppose f is integrable and $\{P_n\}$ is an Archimedean sequence of partitions. Then if P_n^* is a refinement of P_n for each n then $\{P_n^*\}$ is also an Archimedean sequence of partitions. **Proof:** We know that:

$$\{U(f, P_n) - L(f, P_n)\} \to 0$$

and by the Refinement Theorem:

$$U(f, P_n^*) - L(f, P_n^*) \le U(f, P_n) - L(f, P_n)$$

Then by the Comparison Lemma we have

$$\{U(f, P_n^*) - L(f, P_n^*)\} \to 0$$

3. Theorem (Additivity Over Intervals): Suppose f is integrable on [a, b] and let $c \in (a, b)$. Then f is integrable on [a, c] and on [c, b] and

$$\int_{a}^{b} f = \int_{a}^{c} f + \int_{c}^{b} f$$

Proof: Let $\{P_n\}$ be an Archimedean sequence of partitions for f. By the above lemma adding x = c to each P_n still results in an Archimedean sequence of partitions so we just assume that x = c is in each P_n . Write $P_n = P'_n \cup P''_n$ where P'_n and P''_n are the partitions induced by P_n on just [a, c] and [c, b] respectively. By the definition of upper and lower sums we have:

$$U(f, P_n) - L(f, P_n) = [U(f, P'_n) - L(f, P'_n)] + [U(f, P''_n) - L(f, P''_n)]$$

Since the second bracket on the right is nonnegative we have

$$U(f, P_n) - L(f, P_n) \ge U(f, P'_n) - L(f, P'_n)$$

So that by the Comparison Lemma $\{P'_n\}$ is an Archimedean sequence of partitions for f on [a, c] so f is integrable on [a, c] and $\{U(f, P')\} \rightarrow \int_a^c f$. A similar argument shows that $\{P''_n\}$ is an Archimedean sequence of partitions for f on [c, b] so f is integrable on [c, b] and $\{U(f, P'')\} \rightarrow \int_c^b f$. Therefore since

$$\{U(f,P_n)\} \to \int_a^b f$$

and

$$\{U(f, P_n)\} = \{U(f, P'_n) + U(f, P''_n)\} \to \int_a^c f + \int_c^b f$$

we have the result.

4. Theorem (Monotonicity): Suppose $f, g : [a, b] \to \mathbb{R}$ are integrable and for all $x \in [a, b]$ we have $f(x) \leq g(x)$. Then

$$\int_a^b f \le \int_a^b g$$

Proof: Take an Archimedean sequence of partitions for f and one for g. For each n take the union P_n of the corresponding partitions. By the above lemma the resulting $\{P_n\}$ is an Archimedean sequence of partitions for both f and g. From here we get:

$$\{U(g, P_n) - U(f, P_n)\} \rightarrow \int_a^b g - \int_a^b f$$

However since $f(x) \leq g(x)$ we have $U(g, P_n) - U(f, P_n) \geq 0$ and therefore since $[0, \infty)$ is closed we have

$$\int_{a}^{b} g - \int_{a}^{b} f \ge 0$$

5. Theorem (Linearity): Suppose $f, g : [a, b] \to \mathbb{R}$ are integrable and $\alpha, \beta \in \mathbb{R}$. Then the function $\alpha f + \beta g$ is integrable on [a, b] and

$$\int_{a}^{b} \alpha f + \beta g = \alpha \int_{a}^{b} f + \beta \int_{a}^{b} g$$

Proof: Omit (several pages).