Math 410 Section 6.3: Additivity, Monotonicity, Linearity

1. Introduction: Just like with differentiability it's helpful to establish rules for when functions are and are not integrable.
2. Lemma: Suppose f is integrable and $\left\{P_{n}\right\}$ is an Archimedean sequence of partitions. Then if P_{n}^{*} is a refinement of P_{n} for each n then $\left\{P_{n}^{*}\right\}$ is also an Archimedean sequence of partitions.
Proof: We know that:

$$
\left\{U\left(f, P_{n}\right)-L\left(f, P_{n}\right)\right\} \rightarrow 0
$$

and by the Refinement Theorem:

$$
U\left(f, P_{n}^{*}\right)-L\left(f, P_{n}^{*}\right) \leq U\left(f, P_{n}\right)-L\left(f, P_{n}\right)
$$

Then by the Comparison Lemma we have

$$
\left\{U\left(f, P_{n}^{*}\right)-L\left(f, P_{n}^{*}\right)\right\} \rightarrow 0
$$

3. Theorem (Additivity Over Intervals): Suppose f is integrable on $[a, b]$ and let $c \in(a, b)$. Then f is integrable on $[a, c]$ and on $[c, b]$ and

$$
\int_{a}^{b} f=\int_{a}^{c} f+\int_{c}^{b} f
$$

Proof: Let $\left\{P_{n}\right\}$ be an Archimedean sequence of partitions for f. By the above lemma adding $x=c$ to each P_{n} still results in an Archimedean sequence of partitions so we just assume that $x=c$ is in each P_{n}. Write $P_{n}=P_{n}^{\prime} \cup P_{n}^{\prime \prime}$ where P_{n}^{\prime} and $P_{n}^{\prime \prime}$ are the partitions induced by P_{n} on just $[a, c]$ and $[c, b]$ respectively. By the definition of upper and lower sums we have:

$$
U\left(f, P_{n}\right)-L\left(f, P_{n}\right)=\left[U\left(f, P_{n}^{\prime}\right)-L\left(f, P_{n}^{\prime}\right)\right]+\left[U\left(f, P_{n}^{\prime \prime}\right)-L\left(f, P_{n}^{\prime \prime}\right)\right]
$$

Since the second bracket on the right is nonnegative we have

$$
U\left(f, P_{n}\right)-L\left(f, P_{n}\right) \geq U\left(f, P_{n}^{\prime}\right)-L\left(f, P_{n}^{\prime}\right)
$$

So that by the Comparison Lemma $\left\{P_{n}^{\prime}\right\}$ is an Archimedean sequence of partitions for f on $[a, c]$ so f is integrable on $[a, c]$ and $\left\{U\left(f, P^{\prime}\right)\right\} \rightarrow \int_{a}^{c} f$. A similar argument shows that $\left\{P_{n}^{\prime \prime}\right\}$ is an Archimedean sequence of partitions for f on $[c, b]$ so f is integrable on $[c, b]$ and $\left\{U\left(f, P^{\prime \prime}\right)\right\} \rightarrow \int_{c}^{b} f$. Therefore since

$$
\left\{U\left(f, P_{n}\right)\right\} \rightarrow \int_{a}^{b} f
$$

and

$$
\left\{U\left(f, P_{n}\right)\right\}=\left\{U\left(f, P_{n}^{\prime}\right)+U\left(f, P_{n}^{\prime \prime}\right)\right\} \rightarrow \int_{a}^{c} f+\int_{c}^{b} f
$$

we have the result.
4. Theorem (Monotonicity): Suppose $f, g:[a, b] \rightarrow \mathbb{R}$ are integrable and for all $x \in[a, b]$ we have $f(x) \leq g(x)$. Then

$$
\int_{a}^{b} f \leq \int_{a}^{b} g
$$

Proof: Take an Archimedean sequence of partitions for f and one for g. For each n take the union P_{n} of the corresponding partitions. By the above lemma the resulting $\left\{P_{n}\right\}$ is an Archimedean sequence of partitions for both f and g. From here we get:

$$
\left\{U\left(g, P_{n}\right)-U\left(f, P_{n}\right)\right\} \rightarrow \int_{a}^{b} g-\int_{a}^{b} f
$$

However since $f(x) \leq g(x)$ we have $U\left(g, P_{n}\right)-U\left(f, P_{n}\right) \geq 0$ and therefore since $[0, \infty)$ is closed we have

$$
\int_{a}^{b} g-\int_{a}^{b} f \geq 0
$$

5. Theorem (Linearity): Suppose $f, g:[a, b] \rightarrow \mathbb{R}$ are integrable and $\alpha, \beta \in \mathbb{R}$. Then the function $\alpha f+\beta g$ is integrable on $[a, b]$ and

$$
\int_{a}^{b} \alpha f+\beta g=\alpha \int_{a}^{b} f+\beta \int_{a}^{b} g
$$

Proof: Omit (several pages).

