Math 410 Section 6.4: Continuity and Integrability

1. Theorem: Suppose $f:[a, b] \rightarrow \mathbb{R}$ is continuous. Then f is integrable on $[a, b]$.

Lemma: Suppose $f:[a, b] \rightarrow \mathbb{R}$ is continuous and suppose $P=\left\{x_{0}, \ldots, x_{n}\right\}$ is a partition. Then there is some partition interval $\left[x_{i-1}, x_{i}\right]$ containing two points $u, v \in\left[x_{i-1}, x_{i}\right]$ such that

$$
0 \leq U(f, P)-L(f, P) \leq[f(v)-f(u)][b-a]
$$

Proof of Lemma: Choose i so that $M_{i}-m_{i}$ is maximum. For this particular subinterval since f is continuous this implies that this M_{i} and m_{i} are actuallya maximum and a minimum obtainable by the function so choose u, v in that subinterval with $f(u)$ equal to the minimum and $f(v)$ equal to the maximum. Then

$$
\begin{aligned}
U(f, P)-L(f, P) & =\sum_{i=1}^{n}\left(M_{i}-m_{i}\right)\left(x_{i-1}-x_{i}\right) \\
& \leq \sum_{i=1}^{n}(f(v)-f(u))\left(x_{i-1}-x_{i}\right) \\
& =(f(v)-f(u)) \sum_{i=1}^{n}\left(x_{i-1}-x_{i}\right) \\
& =(f(v)-f(u))(b-a)
\end{aligned}
$$

Proof of Theorem: Let $\left\{P_{n}\right\}$ be the regular partition. For each n use the lemma to choose u_{n} and v_{n} such that

$$
0 \leq U\left(f, P_{n}\right)-L\left(f, P_{n}\right) \leq\left[f\left(v_{n}\right)-f\left(u_{n}\right)\right][b-a]
$$

As $n \rightarrow \infty$ the width of each subinterval goes to 0 which implies that $\left\{v_{n}-u_{n}\right\} \rightarrow 0$. Since f is continuous on a closed and bounded interval it is uniformly continuous and hence $\left\{f\left(v_{n}\right)-f\left(u_{n}\right)\right\} \rightarrow 0$. It follows from the Comparison Lemma that

$$
\left\{U\left(f, P_{n}\right)-L\left(f, P_{n}\right)\right\} \rightarrow 0
$$

and so f is integrable on $[a, b]$.

Theorem: Suppose that $f:[a, b] \rightarrow \mathbb{R}$ is bounded on $[a, b]$ and continuous on (a, b). Then f is integrable on $[a, b]$ and the value of the integral does not depend on $f(a)$ and $f(b)$.
Proof: First choose N so that $a<a+\frac{1}{N}<b-\frac{1}{N}<b$. For what follows assume that $n \geq N$ and so $a<a+\frac{1}{n}<b-\frac{1}{n}<b$ too. Next, since f is integrable on $\left[a+\frac{1}{n}, b-\frac{1}{n}\right]$ each of these intervals has an Archimedean sequence of partitions and so from each sequence choose some P_{n}^{\prime} satisfying

$$
U\left(f, P_{n}^{\prime}\right)-L\left(f, P_{n}^{\prime}\right)<\frac{1}{n}
$$

Taking all these n together by the Comparison Lemma note that:

$$
\left\{U\left(f, P_{n}^{\prime}\right)-L\left(f, P_{n}^{\prime}\right)\right\} \rightarrow 0
$$

For each n add $x=a$ and $x=b$ to P_{n}^{\prime} to get a sequence of partitions $\left\{P_{n}\right\}$ of $[a, b]$. In other words:

$$
P_{n}=\left\{x_{0}=a, x_{1}=a+\frac{1}{n}, x_{2}, \ldots, x_{n-1}=b-\frac{1}{n}, x_{n}=b\right\}
$$

Observe that if M and m are the maximum and minimum of f on $[a, b]$ then:

$$
U\left(f, P_{n}\right) \leq M\left(\frac{1}{n}\right)+U\left(f, P_{n}^{\prime}\right)+M\left(\frac{1}{n}\right)
$$

and

$$
L\left(f, P_{n}\right) \leq m\left(\frac{1}{n}\right)+L\left(f, P_{n}^{\prime}\right)+m\left(\frac{1}{n}\right)
$$

and so

$$
U\left(f, P_{n}\right)-L\left(f, P_{n}\right) \leq \frac{2 M-2 m}{n}+\left[U\left(f, P_{n}^{\prime}\right)-L\left(f, P_{n}^{\prime}\right)\right]
$$

From here we have

$$
\left\{U\left(f, P_{n}\right)-L\left(f, P_{n}\right)\right\} \rightarrow 0
$$

by the Comparison Lemma and so f is integrable on $[a, b]$ and $\int_{a}^{b} f=\lim _{n \rightarrow \infty} U\left(f, P_{n}\right)$.
Next, noting that

$$
U\left(f, P_{n}\right)-U\left(f, P_{n}^{\prime}\right) \leq \frac{2 M}{n}
$$

it follows that

$$
\left\{U\left(f, P_{n}\right)-U\left(f, P_{n}^{\prime}\right)\right\} \rightarrow 0
$$

and so

$$
\int_{a}^{b} f=\lim _{n \rightarrow \infty} U\left(f, P_{n}\right)=\lim _{n \rightarrow \infty} U\left(f, P_{n}^{\prime}\right)
$$

and since none of the $U\left(f, P_{n}^{\prime}\right)$ depend on $f(a)$ or $f(b)$, neither does the right-hand limit and hence neither does $\int_{a}^{b} f$.

