
Math 410 Section 6.5: The First Fundamental Theorem of Calculus

1. Introduction: The First Fundamental Theorem of Calculus deals with integrating derivatives. More
intuitively it states that the antiderivative of a function may be used to calculate the integral. It’s this
version that’s used most frequently in standard calculus.

2. The First Fundamental Theorem of Calculus: Suppose F : [a, b] → R is continuous on [a, b] and
differentiable on (a, b). Suppose that F ′ : (a, b) → R is both continuous and bounded. Then:

∫

b

a

F ′ = F
∣

∣

b

a
= F (b)− F (a)

Example: The function F (x) = x2 with F ′(x) = 2x satisfies these hypotheses on the interval [1, 5].
Consequently:

∫ 5

1

2x = x2
∣

∣

5

1
= 25− 1 = 24

Proof: By the second theorem in the previous section we can define F ′(a) and f ′(b) however we like

and the new function F ′ is integrable on [a, b] and the value of the integral
∫

b

a
F ′ does not depend on

these values.

For a partition P and for a subinterval [xi−1, xi] the function F : [xi−1, xi] → R is continous on
[xi−1, xi] and differentiable on (xi−1, xi) and hence by the MVT there is some ci ∈ (xi−1, xi) satisfying

F ′(ci)(xi − xi−1) = F (xi)− F (xi−1)

If we let mi and Mi be the inf and sup of F ′ on each subinterval then we then have

mi(xi − xi−1) ≤ F (xi)− F (xi−1) ≤ Mi(xi − xi−1)

and if we sum over all subintervals we have

L(F ′, P ) ≤ F (b)− F (a) ≤ U(F ′, P )

where the middle term collapses as a telescoping sequence.

Since this is true for any partition P we can see that F (b)−F (a) is a lower bound on the set of upper
sums and also an upper bound on the set of lower sums and so

∫

b

a

F ′ =

∫

b

a

F ′ = glb(U) ≥ F (b)− F (a)

and
∫

b

a

F ′ =

∫

b

a

F ′ = lub(L) ≤ F (b)− F (a)

so that
∫

b

a

F ′ = F (b)− F (a)

QED



3. Note 1: Realize that in order to use this to evaluate some arbitrary
∫

b

a
f that f must be the derivative

of some function. More specifically f must be continuous and bounded and there must be some
F : [a, b] → R which is continuous on [a, b] and differentiable on (a, b) with F ′ = f on (a, b).

It’s entirely possible for these criteria not to be met and for
∫

b

a
f to still exist. For example consider

the function

f(x) =

{

0 for x ∈ [−1, 0)

1 for x ∈ [0, 1]

This is a step function which is hence integrable and in fact it’s not hard to see that

∫ 1

−1

f = 1

However f has no antiderivative on (−1, 1). More specifically there is no F : [−1, 1] → R with F ′ = f
on (−1, 1). To see this observe that if there were such an F then since F ′(x) = f(x) = 0 on (−1, 0) we
must have F (x) = C on (−1, 0) by the Identity Criterion.

At this point F being differentiable at x = 0 would then require the derivative to exist for every
sequence so examining the sequence {−1/n} we would then have:

1 = f(0) = F ′(0) = lim
n→∞

F (−1/n)− F (0)

−1/n− 0
= lim

n→∞

C − F (0)

−1/n− 0
= lim

n→∞

n(F (0)− C)

However the only way that this limit can exist is if F (0) = C in which case the limit is 0.

4. Note 2: Even if f is the antiderivative of a function this doesn’t mean that the antiderivative can be
found in any useful manner. For example consider the integral

∫ 1

0

1

1 + x4

The function f(x) = 1

1+x4 is continuous on [0, 1] and hence integrable so the integral exists. Moreover
this function does have an antiderivative, meaning there is some F (x) defined on [0, 1] with F ′(x) =

1

1+x4 on (0, 1). However this F has no particularly nice closed form, meaning we cannot write it down
in simple terms and use it to evaluate the integral.


