Math 410 Section 6.5: The First Fundamental Theorem of Calculus

1. Introduction: The First Fundamental Theorem of Calculus deals with integrating derivatives. More intuitively it states that the antiderivative of a function may be used to calculate the integral. It's this version that's used most frequently in standard calculus.
2. The First Fundamental Theorem of Calculus: Suppose $F:[a, b] \rightarrow \mathbb{R}$ is continuous on $[a, b]$ and differentiable on (a, b). Suppose that $F^{\prime}:(a, b) \rightarrow \mathbb{R}$ is both continuous and bounded. Then:

$$
\int_{a}^{b} F^{\prime}=\left.F\right|_{a} ^{b}=F(b)-F(a)
$$

Example: The function $F(x)=x^{2}$ with $F^{\prime}(x)=2 x$ satisfies these hypotheses on the interval $[1,5]$. Consequently:

$$
\int_{1}^{5} 2 x=\left.x^{2}\right|_{1} ^{5}=25-1=24
$$

Proof: By the second theorem in the previous section we can define $F^{\prime}(a)$ and $f^{\prime}(b)$ however we like and the new function F^{\prime} is integrable on $[a, b]$ and the value of the integral $\int_{a}^{b} F^{\prime}$ does not depend on these values.
For a partition P and for a subinterval $\left[x_{i-1}, x_{i}\right]$ the function $F:\left[x_{i-1}, x_{i}\right] \rightarrow \mathbb{R}$ is continous on [x_{i-1}, x_{i}] and differentiable on $\left(x_{i-1}, x_{i}\right)$ and hence by the MVT there is some $c_{i} \in\left(x_{i-1}, x_{i}\right)$ satisfying

$$
F^{\prime}\left(c_{i}\right)\left(x_{i}-x_{i-1}\right)=F\left(x_{i}\right)-F\left(x_{i-1}\right)
$$

If we let m_{i} and M_{i} be the inf and sup of F^{\prime} on each subinterval then we then have

$$
m_{i}\left(x_{i}-x_{i-1}\right) \leq F\left(x_{i}\right)-F\left(x_{i-1}\right) \leq M_{i}\left(x_{i}-x_{i-1}\right)
$$

and if we sum over all subintervals we have

$$
L\left(F^{\prime}, P\right) \leq F(b)-F(a) \leq U\left(F^{\prime}, P\right)
$$

where the middle term collapses as a telescoping sequence.
Since this is true for any partition P we can see that $F(b)-F(a)$ is a lower bound on the set of upper sums and also an upper bound on the set of lower sums and so

$$
\int_{a}^{b} F^{\prime}=\overline{\int_{a}^{b}} F^{\prime}=\operatorname{glb}(U) \geq F(b)-F(a)
$$

and

$$
\int_{a}^{b} F^{\prime}=\underline{\int_{a}^{b}} F^{\prime}=\operatorname{lub}(L) \leq F(b)-F(a)
$$

so that

$$
\int_{a}^{b} F^{\prime}=F(b)-F(a)
$$

3. Note 1: Realize that in order to use this to evaluate some arbitrary $\int_{a}^{b} f$ that f must be the derivative of some function. More specifically f must be continuous and bounded and there must be some $F:[a, b] \rightarrow \mathbb{R}$ which is continuous on $[a, b]$ and differentiable on (a, b) with $F^{\prime}=f$ on (a, b).
It's entirely possible for these criteria not to be met and for $\int_{a}^{b} f$ to still exist. For example consider the function

$$
f(x)= \begin{cases}0 & \text { for } x \in[-1,0) \\ 1 & \text { for } x \in[0,1]\end{cases}
$$

This is a step function which is hence integrable and in fact it's not hard to see that

$$
\int_{-1}^{1} f=1
$$

However f has no antiderivative on $(-1,1)$. More specifically there is no $F:[-1,1] \rightarrow \mathbb{R}$ with $F^{\prime}=f$ on $(-1,1)$. To see this observe that if there were such an F then since $F^{\prime}(x)=f(x)=0$ on $(-1,0)$ we must have $F(x)=C$ on $(-1,0)$ by the Identity Criterion.
At this point F being differentiable at $x=0$ would then require the derivative to exist for every sequence so examining the sequence $\{-1 / n\}$ we would then have:

$$
1=f(0)=F^{\prime}(0)=\lim _{n \rightarrow \infty} \frac{F(-1 / n)-F(0)}{-1 / n-0}=\lim _{n \rightarrow \infty} \frac{C-F(0)}{-1 / n-0}=\lim _{n \rightarrow \infty} n(F(0)-C)
$$

However the only way that this limit can exist is if $F(0)=C$ in which case the limit is 0 .
4. Note 2: Even if f is the antiderivative of a function this doesn't mean that the antiderivative can be found in any useful manner. For example consider the integral

$$
\int_{0}^{1} \frac{1}{1+x^{4}}
$$

The function $f(x)=\frac{1}{1+x^{4}}$ is continuous on $[0,1]$ and hence integrable so the integral exists. Moreover this function does have an antiderivative, meaning there is some $F(x)$ defined on $[0,1]$ with $F^{\prime}(x)=$ $\frac{1}{1+x^{4}}$ on $(0,1)$. However this F has no particularly nice closed form, meaning we cannot write it down in simple terms and use it to evaluate the integral.

