Math 410 Section 6.6: The Second Fundamental Theorem of Calculus

- 1. **Introduction:** The Second Fundamental Theorem of Calculus deals with constructing antiderivatives. More intuitively it states that under certain circumstances an integral may be used to construct an antiderivative of a function.
- 2. The Mean Value Theorem for Integrals: Suppose $f:[a,b]\to\mathbb{R}$ is continuous, then $\exists x_0\in[a,b]$ such that

$$\int_a^b f = f(x_0)(b-a)$$

Proof: Since f is continuous apply the EVT to choose x_m and x_M in [a,b] satisfying

$$f(x_m) \le f(x) \le f(x_M)$$

for all $x \in [a, b]$. We then have

$$f(x_m)(b-a) \le \int_a^b f \le f(x_M)(b-a)$$

and so

$$f(x_m) \le \frac{1}{b-a} \int_a^b \le f(x_M)$$

and now apply the IVT to get x_0 between x_m and x_M with

$$f(x_0) = \frac{1}{b-a} \int_a^b$$

3. Preliminary Theorem

(a) **Theorem (Continuity of the Integral):** Suppose the function $f : [a, b] \to \mathbb{R}$ is integrable. For all $x \in [a, b]$ define the function

$$F(x) = \int_{a}^{x} f$$

Then F is continuous.

Proof: Since f is integrable it is bounded so there is some M > 0 with $|f(x)| \leq M$ for all $x \in [a, b]$.

Let $x_0 \in [a, b]$ and suppose $\{x_n\} \to x_0$. We claim that $\{F(x_n)\} \to F(x_0)$.

Observe that if $x_0 < x_n$ then

$$F(x_n) - F(x_0) = \int_a^{x_n} f - \int_a^{x_0} f = \int_{x_0}^{x_n} f$$

at which point we then have

$$|F(x_n) - F(x_0)| = \left| \int_{x_0}^{x_n} f \right| \le M |x_n - x_0|$$

and if $x_n < x_0$ then

$$F(x_n) - F(x_0) = -\left[F(x_0) - F(x_n)\right] = -\left[\int_a^{x_0} f - \int_a^{x_n} f\right] = -\int_{x_n}^{x_0} f$$

at which point we then have

$$|F(x_n) - F(x_0)| = \left| -\int_{x_n}^{x_0} f \right| = \left| \int_{x_n}^{x_0} f \right| \le |M(x_0 - x_n)| = M|x_n - x_0|$$

At this point $\{F(x_n)\}\to F(x_0)$ by the Comparison Lemma.

(b) Example:

Consider the function $f:[0,2]\to\mathbb{R}$ defined by

$$f(x) = \begin{cases} 0 & \text{if } x \in [0, 1] \\ x & \text{if } x \in (1, 2] \end{cases}$$

If we calculate F at each point (see next example for a similar problem worked out in detail) we get:

$$F(x) = \begin{cases} 0 & \text{if } x \in [0, 1] \\ \frac{1}{2}x^2 - \frac{1}{2} & \text{if } x \in (1, 2] \end{cases}$$

By the theorem this is continuous.

(c) Note: This theorem says nothing about the use of F, just that it is a continuous function!

4. The Second Fundamental Theorem of Calculus

(a) The Second Fundamental Theorem of Calculus: Suppose the function $f:[a,b]\to\mathbb{R}$ is continuous. Then the function F defined by $F(x)=\int_a^x f$ is an antiderivative of f. In other words

$$\frac{d}{dx} \left[\int_a^x f \right] = f \text{ for all } x \in (a, b)$$

Proof: The previous theorem shows that F is continuous. What we need to do now is to show that for any $x_0 \in (a, b)$ that we have $F'(x_0) = f(x_0)$.

Suppose $\{x_n\} \to x_0$ with $\{x_n\}$ in $(a,b) - \{x_0\}$. We claim that

$$\left\{\frac{F(x_n) - F(x_0)}{x_n - x_0}\right\} \to f(x_0)$$

Then for any n if $x_n > x_0$ we have

$$F(x_n) - F(x_0) = \int_a^{x_n} f - \int_a^{x_0} f = \int_{x_0}^{x_n} f$$

and then the MVT4I ensures we can choose c_n between x_0 and x_n satisfying

$$F(x_n) - F(x_0) = \int_{x_0}^{x_n} f = f(c_n)(x_n - x_0)$$

On the other hand if $x_n < x_0$ we have

$$F(x_n) - F(x_0) = -\left[F(x_0) - F(x_n)\right] = -\left[\int_a^{x_0} f - \int_a^{x_n} f\right] = -\left[\int_{x_n}^{x_0} f\right]$$

and then the MVT4I ensures we can choose c_n between x_0 and x_n satisfying

$$F(x_n) - F(x_0) = -\left[\int_{x_n}^{x_0} f\right] = -\left[f(c_n)(x_0 - x_n)\right] = f(c_n)(x_n - x_0)$$

Note that these two results are exactly the same and can be rewritten as

$$f(c_n) = \frac{F(x_n) - F(x_0)}{x_n - x_0}$$

Lastly since $\{x_n\} \to x_0$ and since c_n is between x_0 and x_n we have $\{c_n\} \to x_0$ and since f is continuous we finally have

$$\left\{ \frac{F(x_n) - F(x_0)}{x_n - x_0} \right\} = \{ f(c_n) \} \to f(x_0)$$

(b) **Example:** Consider the function $f:[0,2]\to\mathbb{R}$ defined by

$$f(x) = \begin{cases} 1 & \text{if } x \in [0, 1] \\ x & \text{if } x \in (1, 2] \end{cases}$$

Consider the function $F:[0,2]\to\mathbb{R}$ defined by

$$F(x) = \int_0^x f$$

For $x_0 \in [0,1]$ we apply the FTOC1 to get

$$F(x_0) = \int_0^{x_0} f = \int_0^{x_0} 1 = x \Big|_0^{x_0} = x_0$$

and for $x_0 \in (1,2]$ we apply the additivity of the integral along with the FTOC1 to get

$$F(x_0) = \int_0^{x_0} f = \int_0^1 1 + \int_1^{x_0} x = x \Big|_0^1 + \frac{1}{2} x^2 \Big|_1^{x_0} = 1 + \left[\frac{1}{2} x_0^2 - \frac{1}{2} (1)^2 \right] = \frac{1}{2} + \frac{1}{2} x_0^2$$

By the theorem the function

$$F(x) = \begin{cases} x & \text{if } x \in [0, 1] \\ \frac{1}{2} + \frac{1}{2}x^2 & \text{if } x \in (1, 2] \end{cases}$$

is an antiderivative of f.

(c) **Note:** Realize the significant difference in the previous two theorems. The first states that integrability of f is enough to construct a continuous function $F(x) = \int_a^x f$ but it says nothing about the usefulness of this F. It's only when f is continuous that this F is guaranteed to be an antiderivative of f.

5. Miscellaneous Corrolaries

(a) Corrolary: Suppose $f:[a,b]\to\mathbb{R}$ is continuous. Then for all $x\in(a,b)$ we have:

$$\frac{d}{dx} \left[\int_{x}^{b} f \right] = -f(x)$$

Proof: Omit.

(b) **Definition:** Suppose $f:[a,b]\to\mathbb{R}$ is integrable. We define:

$$\int_{b}^{a} f = -\int_{a}^{b} f$$

(c) Corollary: Suppose I is an open interval and $f:I\to\mathbb{R}$ is continuous. Suppose $x_0\in I$ is fixed. Then for all $x\in I$ we have

$$\frac{d}{dx} \left[\int_{x_0}^x f \right] = f(x)$$

Proof: Omit.

(d) **Corollary:** Suppose I is an open interval and $f:I\to\mathbb{R}$ is continuous. Suppose J is an open interval and $\phi:J\to\mathbb{R}$ is differentiable and $\phi(J)\subseteq I$. Suppose $x_0\in I$ is fixed. Then for all $x\in J$ we have

$$\frac{d}{dx} \left[\int_{x_0}^{\phi(x)} f \right] = f(\phi(x))\phi'(x)$$

Proof: Omit.