Math 410 Section 6.6: The Second Fundamental Theorem of Calculus

1. Introduction: The Second Fundamental Theorem of Calculus deals with constructing antiderivatives. More intuitively it states that under certain circumstances an integral may be used to construct an antiderivative of a function.
2. The Mean Value Theorem for Integrals: Suppose $f:[a, b] \rightarrow \mathbb{R}$ is continuous, then $\exists x_{0} \in[a, b]$ such that

$$
\int_{a}^{b} f=f\left(x_{0}\right)(b-a)
$$

Proof: Since f is continous apply the EVT to choose x_{m} and x_{M} in $[a, b]$ satisfying

$$
f\left(x_{m}\right) \leq f(x) \leq f\left(x_{M}\right)
$$

for all $x \in[a, b]$. We then have

$$
f\left(x_{m}\right)(b-a) \leq \int_{a}^{b} f \leq f\left(x_{M}\right)(b-a)
$$

and so

$$
f\left(x_{m}\right) \leq \frac{1}{b-a} \int_{a}^{b} \leq f\left(x_{M}\right)
$$

and now apply the IVT to get x_{0} between x_{m} and x_{M} with

$$
f\left(x_{0}\right)=\frac{1}{b-a} \int_{a}^{b}
$$

3. Preliminary Theorem

(a) Theorem (Continuity of the Integral): Suppose the function $f:[a, b] \rightarrow \mathbb{R}$ is integrable. For all $x \in[a, b]$ define the function

$$
F(x)=\int_{a}^{x} f
$$

Then F is continuous.
Proof: Since f is integrable it is bounded so there is some $M>0$ with $|f(x)| \leq M$ for all $x \in[a, b]$.
Let $x_{0} \in[a, b]$ and suppose $\left\{x_{n}\right\} \rightarrow x_{0}$. We claim that $\left\{F\left(x_{n}\right)\right\} \rightarrow F\left(x_{0}\right)$.
Observe that if $x_{0}<x_{n}$ then

$$
F\left(x_{n}\right)-F\left(x_{0}\right)=\int_{a}^{x_{n}} f-\int_{a}^{x_{0}} f=\int_{x_{0}}^{x_{n}} f
$$

at which point we then have

$$
\left|F\left(x_{n}\right)-F\left(x_{0}\right)\right|=\left|\int_{x_{0}}^{x_{n}} f\right| \leq M\left|x_{n}-x_{0}\right|
$$

and if $x_{n}<x_{0}$ then

$$
F\left(x_{n}\right)-F\left(x_{0}\right)=-\left[F\left(x_{0}\right)-F\left(x_{n}\right)\right]=-\left[\int_{a}^{x_{0}} f-\int_{a}^{x_{n}} f\right]=-\int_{x_{n}}^{x_{0}} f
$$

at which point we then have

$$
\left|F\left(x_{n}\right)-F\left(x_{0}\right)\right|=\left|-\int_{x_{n}}^{x_{0}} f\right|=\left|\int_{x_{n}}^{x_{0}} f\right| \leq\left|M\left(x_{0}-x_{n}\right)\right|=M\left|x_{n}-x_{0}\right|
$$

At this point $\left\{F\left(x_{n}\right)\right\} \rightarrow F\left(x_{0}\right)$ by the Comparison Lemma.
(b) Example:

Consider the function $f:[0,2] \rightarrow \mathbb{R}$ defined by

$$
f(x)= \begin{cases}0 & \text { if } x \in[0,1] \\ x & \text { if } x \in(1,2]\end{cases}
$$

If we calculate F at each point (see next example for a similar problem worked out in detail) we get:

$$
F(x)= \begin{cases}0 & \text { if } x \in[0,1] \\ \frac{1}{2} x^{2}-\frac{1}{2} & \text { if } x \in(1,2]\end{cases}
$$

By the theorem this is continuous.
(c) Note: This theorem says nothing about the use of F, just that it is a continuous function!

4. The Second Fundamental Theorem of Calculus

(a) The Second Fundamental Theorem of Calculus: Suppose the function $f:[a, b] \rightarrow \mathbb{R}$ is continuous. Then the function F defined by $F(x)=\int_{a}^{x} f$ is an antiderivative of f. In other words

$$
\frac{d}{d x}\left[\int_{a}^{x} f\right]=f \text { for all } x \in(a, b)
$$

Proof: The previous theorem shows that F is continuous. What we need to do now is to show that for any $x_{0} \in(a, b)$ that we have $F^{\prime}\left(x_{0}\right)=f\left(x_{0}\right)$.
Suppose $\left\{x_{n}\right\} \rightarrow x_{0}$ with $\left\{x_{n}\right\}$ in $(a, b)-\left\{x_{0}\right\}$. We claim that

$$
\left\{\frac{F\left(x_{n}\right)-F\left(x_{0}\right)}{x_{n}-x_{0}}\right\} \rightarrow f\left(x_{0}\right)
$$

Then for any n if $x_{n}>x_{0}$ we have

$$
F\left(x_{n}\right)-F\left(x_{0}\right)=\int_{a}^{x_{n}} f-\int_{a}^{x_{0}} f=\int_{x_{0}}^{x_{n}} f
$$

and then the MVT4I ensures we can choose c_{n} between x_{0} and x_{n} satisfying

$$
F\left(x_{n}\right)-F\left(x_{0}\right)=\int_{x_{0}}^{x_{n}} f=f\left(c_{n}\right)\left(x_{n}-x_{0}\right)
$$

On the other hand if $x_{n}<x_{0}$ we have

$$
F\left(x_{n}\right)-F\left(x_{0}\right)=-\left[F\left(x_{0}\right)-F\left(x_{n}\right)\right]=-\left[\int_{a}^{x_{0}} f-\int_{a}^{x_{n}} f\right]=-\left[\int_{x_{n}}^{x_{o}} f\right]
$$

and then the MVT4I ensures we can choose c_{n} between x_{0} and x_{n} satisfying

$$
F\left(x_{n}\right)-F\left(x_{0}\right)=-\left[\int_{x_{n}}^{x_{0}} f\right]=-\left[f\left(c_{n}\right)\left(x_{0}-x_{n}\right)\right]=f\left(c_{n}\right)\left(x_{n}-x_{0}\right)
$$

Note that these two results are exactly the same and can be rewritten as

$$
f\left(c_{n}\right)=\frac{F\left(x_{n}\right)-F\left(x_{0}\right)}{x_{n}-x_{0}}
$$

Lastly since $\left\{x_{n}\right\} \rightarrow x_{0}$ and since c_{n} is between x_{0} and x_{n} we have $\left\{c_{n}\right\} \rightarrow x_{0}$ and since f is continuous we finally have

$$
\left\{\frac{F\left(x_{n}\right)-F\left(x_{0}\right)}{x_{n}-x_{0}}\right\}=\left\{f\left(c_{n}\right)\right\} \rightarrow f\left(x_{0}\right)
$$

(b) Example: Consider the function $f:[0,2] \rightarrow \mathbb{R}$ defined by

$$
f(x)= \begin{cases}1 & \text { if } x \in[0,1] \\ x & \text { if } x \in(1,2]\end{cases}
$$

Consider the function $F:[0,2] \rightarrow \mathbb{R}$ defined by

$$
F(x)=\int_{0}^{x} f
$$

For $x_{0} \in[0,1]$ we apply the FTOC1 to get

$$
F\left(x_{0}\right)=\int_{0}^{x_{0}} f=\int_{0}^{x_{0}} 1=\left.x\right|_{0} ^{x_{0}}=x_{0}
$$

and for $x_{0} \in(1,2]$ we apply the additivity of the integral along with the FTOC1 to get

$$
F\left(x_{0}\right)=\int_{0}^{x_{0}} f=\int_{0}^{1} 1+\int_{1}^{x_{0}} x=\left.x\right|_{0} ^{1}+\left.\frac{1}{2} x^{2}\right|_{1} ^{x_{0}}=1+\left[\frac{1}{2} x_{0}^{2}-\frac{1}{2}(1)^{2}\right]=\frac{1}{2}+\frac{1}{2} x_{0}^{2}
$$

By the theorem the function

$$
F(x)= \begin{cases}x & \text { if } x \in[0,1] \\ \frac{1}{2}+\frac{1}{2} x^{2} & \text { if } x \in(1,2]\end{cases}
$$

is an antiderivative of f.
(c) Note: Realize the significant difference in the previous two theorems. The first states that integrability of f is enough to construct a continuous function $F(x)=\int_{a}^{x} f$ but it says nothing about the usefulness of this F. It's only when f is continuous that this F is guaranteed to be an antiderivative of f.

5. Miscellaneous Corrolaries

(a) Corrolary: Suppose $f:[a, b] \rightarrow \mathbb{R}$ is continuous. Then for all $x \in(a, b)$ we have:

$$
\frac{d}{d x}\left[\int_{x}^{b} f\right]=-f(x)
$$

Proof: Omit.
(b) Definition: Suppose $f:[a, b] \rightarrow \mathbb{R}$ is integrable. We define:

$$
\int_{b}^{a} f=-\int_{a}^{b} f
$$

(c) Corollary: Suppose I is an open interval and $f: I \rightarrow \mathbb{R}$ is continuous. Suppose $x_{0} \in I$ is fixed. Then for all $x \in I$ we have

$$
\frac{d}{d x}\left[\int_{x_{0}}^{x} f\right]=f(x)
$$

Proof: Omit.
(d) Corollary: Suppose I is an open interval and $f: I \rightarrow \mathbb{R}$ is continuous. Suppose J is an open interval and $\phi: J \rightarrow \mathbb{R}$ is differentiable and $\phi(J) \subseteq I$. Suppose $x_{0} \in I$ is fixed. Then for all $x \in J$ we have

$$
\frac{d}{d x}\left[\int_{x_{0}}^{\phi(x)} f\right]=f(\phi(x)) \phi^{\prime}(x)
$$

Proof: Omit.

