
Math 410 Section 8.3: The Convergence of Taylor Polynomials

1. Introduction: Suppose we start with a function f : I → R with I a neighborhood of x0 such that f
has all possible derivatives at x0 and we construct the Taylor Polynomials p0(x), p1(x), p2(x), ... for f
at x0. For each x this results in a sequence {pn(x)}. We are interested in the possibility that

{pn(x)} → f(x)

meaning the Taylor polyomials converge to the function at that x. If this is the case then we write:

f(x) =

∞
∑

k=0

f (k)(x0)

k!
(x− x0)

k

where the infinite series on the right is called the Taylor Series for f at x.

Notice that since rn(x) = f(x)− pn(x) this will happen precisely when {rn(x)} → 0.

This is especially useful if it is true for some large collection of x since then essentially the Taylor Series
(infinite Taylor polynomial) can be used as a substitute for the function.

Pre-Intuition: For each n we have:

rn(x) =
f (n+1)(cc)

(n+ 1)!
(x− x0)

n+1

where we’ve been very specific to point out that cn depends on n.

Notice the denominator is (n+1)! and so {rn(x)} → 0 precisely when the numerator grows slower than
this as n increases. The numerator is composed of two parts, f (n+1)(cn) and (x− x0)

n+1. The latter
of these doesn’t matter because as n grows eventually the additional terms introduced by (n+1)! will
outweigh those introduces by multiplying by more (x− x0)s. So really it’s all about making sure that
the derivatives don’t grow too quickly as n does. A really basic example would be a function like sine
or cosine where the derivatives are all bounded by the same constants.

Example: Take f : R → R defined by f(x) = sinx and set x0 = 0. Consider x = 2. We know that for
each n there is some cn strictly between 0 and 2 such that:

rn(2) =
f (n+1)(cn)

(n+ 1)!
(2− 0)n+1

Because all derivatives of f are bound between −1 and 1 we then know:

|rn(2)| ≤
2n+1

(n+ 1)!

To formalize the idea that (x− x0)
n+1 is outweighed by (n+ 1)! observe that for n ≥ 4 we have:

2n+1

(n+ 1)!
=

[

2

1
·
2

2
·
2

3

] [

2

4
· ... ·

2

n+ 1

]

≤ [2 · 2 · 2]

[

2

4
· ... ·

2

4

]

≤ 8 ·

(

1

2

)n−2

so that
{rn(2)} → 0

by the Comparison Lemma and consequently

{pn(2)} → f(2) = sin(2)

As a consequence we can approximate sin(2) using pn(2) for very large n.



2. Taylor Polyomial Convergence Theorem

(a) Pre-Intuition: First we’ll generalize and formalize the calculation shown in the last example.
Then we will point out that as long as the derivatives have reasonable constraint we can fold them
into the bound.

(b) Lemma: For any α ∈ R we have
{

αn

n!

}

→ 0

Proof: Assume α > 0. The case where α < 0 just involves some well-placed absolute values and
the case where α = 0 is obvious.

Fix k ≥ 2α and then we have:

αn

n!
=

[

α

1
· ·
α

2
· ... ·

α

k − 1

]

[α

k
· ... ·

α

n

]

≤ [α · α · ... · α · α]

[

1

2
· ... ·

1

2

]

≤ αk−1

(

1

2

)n−k+1

≤ (2α)k−1

(

1

2

)n

so that the result follows by the Comparison Lemma.

(c) Theorem (Taylor Polynomial Convergence Theorem): Let I be a neighborhood of x0 and
suppose f : I → R has all derivatives. Fix x ∈ I and suppose there ∃B,M ∈ R

+ such that ∀n ∈ N

and ∀c strictly between x0 and x we have
∣

∣

∣
f (n)(c)

∣

∣

∣
≤ BMn

Then
{rn(x)} → 0 and hence {pn(x)} → f(x)

Proof: For each n by the LRT we have some cn strictly between x0 and x such that

rn(x) =
f (n+1)(cn)

(n+ 1)!
(x− x0)

n+1

It follows that:

|rn(x)| =

∣

∣

∣

∣

f (n+1)(cn)

(n+ 1)!
(x− x0)

n+1

∣

∣

∣

∣

≤
BMn+1

(n+ 1)!
|x− x0|

n+1 = B
(M |x− x0|)

n+1

(n+ 1)!

So then {rn(x)} → 0 by the Comparison Lemma and the previous Lemma.

(d) Example: Let f(x) = cosx and x0 = 2. Let x ∈ R. Observe that for all c strictly between x0 = 0
and x = 2 (in fact for all c) we have:

∣

∣

∣
f (n+1)(c)

∣

∣

∣
≤ 1

which satisfies the theorem with M = 1 and B = 1. Thus {pn(x)} → f(x) = ex, specifically:

ex = 1 + x+
1

2
x2 +

1

3!
x3 +

1

4!
x4 + ...



(e) Example: Let f(x) = 2x and x0 = 0. Let x ∈ R.

If x > 0 then for 0 < c < x and so 2c < 2x and so:

|fn(c)| = |(ln 2)n2c| = 2c(ln 2)n ≤ 2x(ln 2)n

which satisfies the theorem with B = 2x and M = ln 2.

If x < 0 then for x < c < 0 and so 2c < 1 and so:

|fn(c)| = |(ln 2)n2c| ≤ (ln 2)n

which satisfies the theorem with B = 1 and M = ln 2.

Thus for all x we have {pn(x)} → f(x) = 2x.

(f) Comment:
The hypotheses are sufficient but not necessary.

(g) Example: Let f : R+ → R be f(x) = 1
x
and x0 = 1. Let x ∈ R

+.

Observe that
∣

∣

∣
f (n)(c)

∣

∣

∣
=

∣

∣

∣

∣

n!

cn+1

∣

∣

∣

∣

which does not satisfy the hypotheses because of the n!.

However for each n we have some cn strictly between 1 and x with

|rn(x)| =

∣

∣

∣

∣

f (n+1)(cn)

(n+ 1)!
(x− 1)n+1

∣

∣

∣

∣

=

∣

∣

∣

∣

(n+ 1)!/cn+2
n

(n+ 1)!
(x− 1)n+1

∣

∣

∣

∣

=
1

x− 1

[

x− 1

cn

]n+2

This converges for some values of x. For example if 1 < x < 2 then we have 0 < x − 1 < 1 and
1 < cn < 2 and so

rn(x) =
1

x− 1

[

x− 1

cn

]n+2

≤ 2 [x− 1]
n+2

and so
{rn(x)} → 0

by the Comparison Lemma.


