Math 410 Section 8.5: The Cauchy Integral Remainder Theorem

1. Introduction: We know that in general the Taylor polynomial does not equal the function (other
than at ) and so there is a remainder:

f(x) = pu(z) +7ro(2)

We also have a formula for r,(z), the Lagrange Remainder Formula. However this is not the only
formula for the remainder.

2. Preliminary Definition: Suppose f : [a,b] — R is integrable. We define:
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3. Integration by Parts: Supppose f,g : [a,b] — R are both continuous and have continuous bounded

derivatives on (a,b). Then
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where the last equality holds by the First Fundamental Theorem of Calculus.

Proof: We have:

4. The Cauchy Integral Remainder Theorem: Let I be a neighborhood of 2y and let n € N. Suppose
f:I —Rhas n+1 derivatives and f("+1) : I — R is continuous. Then for each z € I we have:
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ro(x) = p

In other words:

f(@) = pa(z) + % /: FOFD ) (2 — )™ dt

Note: The primary thing to note is that while the Lagrange Remainder Formula depends on an
unknown (the c¢), the Cauchy Integral Remainder Formula does not. It does however depend on an
integral that is in many cases impractical to calculate. But on a positive note this integral can be
approximated using sums.



Proof: We proceed by induction but we will show both n = 0 and n = 1 just because they’re
enlightening:
For the case n = 0 observe that the right side of the above equals
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where the First Fundamental Theorem of Calculus is used to evaluate the integral.

For the case n = 1 observe that by the First Fundamental Theorem of Calculus we have:
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We proceed by rewriting the integral and integrating by parts:
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Thus:
F(@) = F(xo) + ' (x0) (@ — z0) + / )@ — tydt

and we have our claim for n = 1.

Assume that for n we have:
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Observe that:
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