## 1. Theorem (The Weierstrass Approximation Theorem):

Suppose $f:[a, b] \rightarrow \mathbb{R}$ is continuous. Then for all $\epsilon>0$ there is a polynomial $p: \mathbb{R} \rightarrow \mathbb{R}$ such that for all $x \in[a, b]$ we have $|f(x)-p(x)|<\epsilon$.
2. Two Lemmas: There are two Lemmas needed which we will state without proof.
(a) Lemma A: For $x \in \mathbb{R}$ and $n \in \mathbb{N}$ we have:

$$
\sum_{k=0}^{n}\binom{n}{k} x^{k}(1-x)^{n-k}=1
$$

(b) Lemma B: For $x \in \mathbb{R}$ and $n \in \mathbb{N}$ with $n \geq 2$ we have:

$$
\sum_{k=0}^{n}\left(x-\frac{k}{n}\right)^{2}\binom{n}{k} x^{k}(1-x)^{n-k}=\frac{x(1-x)}{n}
$$

## 3. Proof of the WAT:

Note: We can focus on the case $[0,1]$ since for any other $f:[a, b] \rightarrow \mathbb{R}$ simply define $g(x)=f\left(\frac{x-a}{b-a}\right)$, apply the WAT to $g:[0,1] \rightarrow \mathbb{R}$ to get $q(x)$, then define $p(x)=q((b-a) x+a)$. All we're doing here is vertically shifting and stretching/shrinking the function so it's on $[0,1]$, applying the $[0,1]$ version and then shrinking/stretching back. Since this does not affect the $y$-values the theorem holds.
Thus given $f:[0,1] \rightarrow \mathbb{R}$ and $\epsilon>0$ choose each of the following:

- Since $f$ is continuous on $[0,1]$ it is uniformly continuous on $[0,1]$. Choose $\delta>0$ such that for all $u, v \in[0,1]$ we have $|u-v|<\delta$ implies $|f(u)-f(v)|<\frac{\epsilon}{2}$.
- By the Extreme Value Theorem choose $M$ so that for all $x \in[0,1]$ we have $|f(x)| \leq M$.
- Choose $n \in \mathbb{N}$ so that $n>\frac{4 M}{\epsilon \delta^{2}}$ and notice that this tells us: Fact $\mathbf{C}$ : We have $\frac{2 M}{n \delta^{2}}<\frac{\epsilon}{2}$.

Define

$$
p(x)=\sum_{k=0}^{n} f\left(\frac{k}{n}\right)\binom{n}{k} x^{k}(1-x)^{n-k}
$$

We claim that $p(x)$ does the job.
Let $x \in[a, b]$ and let $1 \leq k \leq n$. Either $\left|x-\frac{k}{n}\right|<\delta$ or $\left|x-\frac{k}{n}\right| \geq \delta$.

- If $\left|x-\frac{k}{n}\right|<\delta$ then $\left|f(x)-f\left(\frac{k}{n}\right)\right|<\frac{\epsilon}{2}$.
- If $\left|x-\frac{k}{n}\right| \geq \delta$ then $\left|f(x)-f\left(\frac{k}{n}\right)\right| \leq 2 M$ by the EVT above and since $\left|x-\frac{k}{n}\right| \geq \delta$ we have $\left(x-\frac{k}{n}\right)^{2} \geq \delta^{2}$ and hence $\frac{1}{\delta^{2}}\left(x-\frac{k}{n}\right)^{2} \geq 1$ and hence $\left|f(x)-f\left(\frac{k}{n}\right)\right| \leq 2 M \leq \frac{2 M}{\delta^{2}}\left(x-\frac{k}{n}\right)^{2}$.

Thus in all cases we have $\left|f(x)-f\left(\frac{k}{n}\right)\right| \leq \frac{\epsilon}{2}+\frac{2 M}{\delta^{2}}\left(x-\frac{k}{n}\right)^{2}$.

Next since

$$
f(x)=f(x) \cdot 1=f(x) \underbrace{\sum_{k=0}^{n}\binom{n}{k} x^{k}(1-x)^{n-k}}_{\text {Lemma A }}=\sum_{k=0}^{n} f(x)\binom{n}{k} x^{k}(1-x)^{n-k}
$$

We have

$$
\begin{aligned}
f(x)-p(x) & =\sum_{k=0}^{n} f(x)\binom{n}{k} x^{k}(1-x)^{n-k}-\sum_{k=0}^{n} f\left(\frac{k}{n}\right)\binom{n}{k} x^{k}(1-x)^{n-k} \\
& =\sum_{k=0}^{n}\left[f(x)-f\left(\frac{k}{n}\right)\right]\binom{n}{k} x^{k}(1-x)^{n-k}
\end{aligned}
$$

and so by the Triangle Inequality we have:

$$
\begin{aligned}
|f(x)-p(x)| & \leq \sum_{k=0}^{n}\left|f(x)-f\left(\frac{k}{n}\right)\right|\binom{n}{k} x^{k}(1-x)^{n-k} \\
& \leq \sum_{k=0}^{n}\left[\frac{\epsilon}{2}+\frac{2 M}{\delta^{2}}\left(x-\frac{k}{n}\right)^{2}\right]\binom{n}{k} x^{k}(1-x)^{n-k} \\
& \leq \frac{\epsilon}{2} \sum_{k=0}^{n}\binom{n}{k} x^{k}(1-x)^{n-k}+\frac{2 M}{\delta^{2}} \underbrace{\text { Lemma B }}_{\underbrace{n=0}\left(x-\frac{k}{n}\right)^{2}\binom{n}{k} x^{k}(1-x)^{n-k}} \\
& =\frac{\epsilon}{2}+\frac{2 M}{\delta^{2}} \underbrace{\frac{x(1-x)}{n}}_{0 \leq x(1-x)<1} \\
& <\frac{\epsilon}{2}+\underbrace{\frac{2 M}{n \delta^{2}}}_{\text {Fact C }} \\
& <\frac{\epsilon}{2}+\frac{\epsilon}{2}=\epsilon
\end{aligned}
$$

4. Example Consider the function $f:[0,1] \rightarrow \mathbb{R}$ given by

$$
f(x)= \begin{cases}2 x & \text { if } 0 \leq x \leq 0.5 \\ 1 & \text { if } 0.5<x \leq 1\end{cases}
$$

If we want our polynomial to be within 0.1 of $f(x)$ then because of the slope of 2 and because $\frac{\epsilon}{2}=0.05$ we need to choose $\delta=0.025$. Observe that $M=1$ satisfies $|f(x)|<M$ for all $x \in[0,1]$.
We then choose $n>\frac{4 M}{\epsilon \delta^{2}}=\frac{4(1)}{(0.1)(0.025)^{2}}=64000$ and we define our polynomial:

$$
p(x)=\sum_{k=0}^{64000} f\left(\frac{k}{64000}\right)\binom{k}{64000} x^{k}(1-x)^{64000-k}
$$

Notice this polynomial has degree 64000 . Which is funny.

