Math 410 Section 9.1: Sequences and Series of Numbers

1. **Introduction:** The goal of this section is to formally define a series and what it means for a series to converge. In addition we will introduce the concept of a Cauchy sequence and look at news methods for showing that sequences and series converge.

2. Series

(a) **Definition:** Given a sequence $\{a_n\}$ we construct the series (infinite sum) represented by:

$$\sum_{n=1}^{\infty} a_n$$

(b) Convergence of Series Given a series as above we define the n^{th} partial sum:

$$s_n = \sum_{k=1}^n a_n = a_1 + a_2 + \dots + a_n$$

We then say that the series convergences when the sequence of partial sums

$$\{s_n\} = \left\{\sum_{k=1}^n a_n\right\}$$

converges. If it converges to some S then we say that the series converges to S and we write:

$$\sum_{n=1}^{\infty} a_n = S$$

Basically we are asking: As we add more and more terms does the resulting sum approach something?

(c) **Example:** Consider $\sum_{n=1}^{\infty} (1/2)^n$. For each k we have

$$s_k = \frac{1}{2} + \frac{1}{4} + \frac{1}{8} + \dots + \frac{1}{2^k} = 1 - \frac{1}{2^k}$$

and since $\{s_k\} \to 1$ we have $\sum_{n=1}^{\infty} (1/2)^n = 1$.

- (d) Theorem: If |r| < 1 then ∑_{n=0}[∞] rⁿ = 1/(1-r).
 Proof: This is just like the 1/2 case above but using the formula for a geometric sum to get an expression for the nth partial sum.
- (e) **Example:** Consider $\sum_{n=1}^{\infty} (-1)^n$. Here we have $s_k = -1$ for k odd and $s_k = 0$ for k even. Thus since $\{s_k\}$ diverges we say that $\sum_{n=1}^{\infty} 1$ diverges.
- (f) **Theorem:** Suppose $\sum_{k=1}^{\infty} a_n = S$. Then $\{a_n\} \to 0$. **Proof:** We know $\{s_n\} \to S$ but also $\{s_{n-1}\} \to S$. Then $\{a_n\} = \{s_n - s_{n-1}\} \to S - S = 0$.

3. Cauchy Sequences

(a) **Definition:** A sequence $\{a_n\}$ is said to be Cauchy (or to be a Cauchy sequence) if for all $\epsilon > 0$ there exists some N such that if $n_1, n_2 \ge N$ then $|a_{n_1} - a_{n_2}| < \epsilon$.

Note: Intuitively a sequence is Cauchy if, given a closeness, we can give a cutoff after which all elements are within that closeness of one another. It's not usually much easier proving a sequence is Cauchy than proving it converges but it's a handy alternative which appears in theorems.

(b) Theorem (The Cauchy Convergence Criterion): A sequence converges iff it is Cauchy. Proof: Suppose that {a_n} → a. Given ε > 0 choose N so that if n ≥ N then |a_n − a| < ^ε/₂. Then if n₁, n₂ ≥ N then

$$|a_{n_1} - a_{n_2}| = |(a_{n_1} - a_n) + (a_n - a_{n_2})| \le |a_{n_1} - a_n| + |a_n - a_{n_2}| < \epsilon$$

Suppose that $\{a_n\}$ is Cauchy. First we'll show that $\{a_n\}$ is bounded. For $\epsilon = 1$ choose N so that if $n_1, n_2 \ge N$ we have $|a_{n_1} - a_{n_2}| < 1$. Specifically then if $n \ge N$ we have $|a_n - a_N| < 1$ and so $-1 < a_n - a_N < 1$ and so $a_N - 1 < a_n < a_N + 1$. Consider $M = \max\{a_1, a_2, ..., a_{N-1}, a_N + 1\}$. We see that for all n we have $a_n \le M$. Likewise consider $m = \min\{a_1, a_2, ..., a_{N-1}, a_N - 1\}$. We see that for all n we have $a_n \ge m$.

We know every bounded sequence has a convergent subsequence and so $\{a_n\}$ has a convergent subsequence $\{a_{n_k}\} \to a$. We claim $\{a_n\} \to a$. Let $\epsilon > 0$. Since $\{a_n\}$ is Cauchy choose N_1 so that if $n_1, n_2 \ge N_1$ then $|a_{n_1} - a_{n_2}| < \frac{\epsilon}{2}$. Since $\{a_{n_k}\} \to a$ choose N_2 so that if $n_k \ge N_2$ then $|a_{n_k} - a| < \frac{\epsilon}{2}$. Then if $n, n_k \ge \max\{N_1, N_2\}$ then

$$|a_n - a| = |(a_n - a_{n_k}) + (a_{n_k} - a)| \le |a_n - a_{n_k}| + |a_{n_k} - a| < \epsilon$$

(c) Theorem (The Cauchy Convergence Criterion for Series): The series $\sum_{n=0}^{\infty} a_n$ converges iff for all $\epsilon > 0$ there is some $N \in \mathbb{N}$ such that for all $n \ge N$ and for all $k \in \mathbb{N}$ we have

$$|a_{n+1} + \dots + a_{n+k}| < \epsilon$$

Proof: By definition the series converges iff $\{s_n\}$ converges which occurs iff it is Cauchy. This is true iff for all $n_1, n_2 \ge N$ we have $|s_{n_1} - s_{n_2}| < \epsilon$. WLOG we can take $n_1 > n_2$ so let $n = n_2$ and $n_1 = n + k$ and then we have

$$\begin{split} |s_{n_1} - s_{n_2}| < \epsilon \\ |s_{n+k} - s_n| < \epsilon \\ |(a_1 + \ldots + a_n + a_{n+1} + \ldots + a_{n+k}) - (a_1 + \ldots + a_n)| < \epsilon \\ |a_{n+1} + \ldots + a_{n+k}| < \epsilon \end{split}$$