Math 410 Section 9.1: Sequences and Series of Numbers

1. Introduction: The goal of this section is to formally define a series and what it means for a series to
converge. In addition we will introduce the concept of a Cauchy sequence and look at news methods for
showing that sequences and series converge.

2. Series

(a) Definition: Given a sequence {a,} we construct the series (infinite sum) represented by:
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Convergence of Series Given a series as above we define the n'! partial sum:
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Sn :Zan =a1+ay+...+a,
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We then say that the series convergences when the sequence of partial sums
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converges. If it converges to some S then we say that the series converges to S and we write:
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Basically we are asking: As we add more and more terms does the resulting sum approach some-
thing?

Example: Consider > 2 (1/2)". For each k we have
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and since {s;} — 1 we have > >~ ,(1/2)" = 1.
Theorem: If |r| < 1 then Y " r" = .
Proof: This is just like the 1/2 case above but using the formula for a geometric sum to get an
expression for the n'" partial sum.

Example: Consider > >7 (—1)". Here we have s, = —1 for k odd and s, = 0 for k even. Thus

n=1
since {sj} diverges we say that y - 1 diverges.

Theorem: Suppose Y -, a, = S. Then {a,} — 0.
Proof: We know {s,} — S but also {s,—1} — S. Then {a,} = {sn — spn—1} = 5 -5 =0.



3. Cauchy Sequences

(a)

Definition: A sequence {a,} is said to be Cauchy (or to be a Cauchy sequence) if for all € > 0
there exists some N such that if ny,ny > N then |a,, — an,| <e.

Note: Intuitively a sequence is Cauchy if, given a closeness, we can give a cutoff after which all
elements are within that closeness of one another. It’s not usually much easier proving a sequence
is Cauchy than proving it converges but it’s a handy alternative which appears in theorems.

Theorem (The Cauchy Convergence Criterion): A sequence converges iff it is Cauchy.
Proof: Suppose that {a,} — a. Given € > 0 choose N so that if n > N then |a,, —a| < §. Then
if ny,ne > N then

‘am _an2| = |(an1 _an) + (an _an2)| < |an1 - an‘ + |an _an2| <e€

Suppose that {a,} is Cauchy. First we’ll show that {a,} is bounded. For ¢ = 1 choose N so that
if n1,me2 > N we have |a,, — an,| < 1. Specifically then if n > N we have |a,, — ay| < 1 and so
—l1<a,—ay <landsoany—1<a,<ay+1. Consider M = max{ay,as,...,any—1,an +1}. We
see that for all n we have a,, < M. Likewise consider m = min{aq,as,...,an—_1,any — 1}. We see
that for all n we have a,, > m.

We know every bounded sequence has a convergent subsequence and so {a,} has a convergent
subsequence {an, } = a. We claim {a,} — a. Let € > 0. Since {a,} is Cauchy choose N; so that if
n1,ng > Ny then |a,, —an,| < §. Since {an, } = a choose Ny so that if ny, > Ny then |a,, —a| < §.
Then if n,n; > max{Ny, No} then

lan — a|l = [(an — an,) + (an, — a)| < |an — an, | + |an, —al <e

Theorem (The Cauchy Convergence Criterion for Series): The series Y.~ a, converges
iff for all € > 0 there is some N € N such that for all n > N and for all £ € N we have

|an+1 + ...+ an+k| <€

Proof: By definition the series converges iff {s,} converges which occurs iff it is Cauchy. This is
true iff for all ny,ne > N we have |s,, — $p,| < €. WLOG we can take ny > ny so let n = ns and
n1 = n + k and then we have

[Sn, — Sno| < €

[tk — Sn| <€

[(a1 4 .. + an + apa1 + oo+ Gpar) — (a1 + . +an)| <€
[@ns1 + o+ anyr| <€



