
Math 410 Section 9.1: Sequences and Series of Numbers

1. Introduction: The goal of this section is to formally define a series and what it means for a series to
converge. In addition we will introduce the concept of a Cauchy sequence and look at news methods for
showing that sequences and series converge.

2. Series

(a) Definition: Given a sequence {an} we construct the series (infinite sum) represented by:

∞
∑

n=1

an

(b) Convergence of Series Given a series as above we define the nth partial sum:

sn =

n
∑

k=1

an = a1 + a2 + ...+ an

We then say that the series convergences when the sequence of partial sums

{sn} =

{

n
∑

k=1

an

}

converges. If it converges to some S then we say that the series converges to S and we write:

∞
∑

n=1

an = S

Basically we are asking: As we add more and more terms does the resulting sum approach some-
thing?

(c) Example: Consider
∑

∞

n=1
(1/2)n. For each k we have

sk =
1

2
+

1

4
+

1

8
+ ...+

1

2k
= 1−

1

2k

and since {sk} → 1 we have
∑

∞

n=1
(1/2)n = 1.

(d) Theorem: If |r| < 1 then
∑

∞

n=0
rn = 1

1−r
.

Proof: This is just like the 1/2 case above but using the formula for a geometric sum to get an
expression for the nth partial sum.

(e) Example: Consider
∑

∞

n=1
(−1)n. Here we have sk = −1 for k odd and sk = 0 for k even. Thus

since {sk} diverges we say that
∑

∞

n=1
1 diverges.

(f) Theorem: Suppose
∑

∞

k=1
an = S. Then {an} → 0.

Proof: We know {sn} → S but also {sn−1} → S. Then {an} = {sn − sn−1} → S − S = 0.



3. Cauchy Sequences

(a) Definition: A sequence {an} is said to be Cauchy (or to be a Cauchy sequence) if for all ǫ > 0
there exists some N such that if n1, n2 ≥ N then |an1

− an2
| < ǫ.

Note: Intuitively a sequence is Cauchy if, given a closeness, we can give a cutoff after which all
elements are within that closeness of one another. It’s not usually much easier proving a sequence
is Cauchy than proving it converges but it’s a handy alternative which appears in theorems.

(b) Theorem (The Cauchy Convergence Criterion): A sequence converges iff it is Cauchy.
Proof: Suppose that {an} → a. Given ǫ > 0 choose N so that if n ≥ N then |an − a| < ǫ

2
. Then

if n1, n2 ≥ N then

|an1
− an2

| = |(an1
− an) + (an − an2

)| ≤ |an1
− an|+ |an − an2

| < ǫ

Suppose that {an} is Cauchy. First we’ll show that {an} is bounded. For ǫ = 1 choose N so that
if n1, n2 ≥ N we have |an1

− an2
| < 1. Specifically then if n ≥ N we have |an − aN | < 1 and so

−1 < an − aN < 1 and so aN − 1 < an < aN +1. Consider M = max{a1, a2, ..., aN−1, aN +1}. We
see that for all n we have an ≤ M . Likewise consider m = min{a1, a2, ..., aN−1, aN − 1}. We see
that for all n we have an ≥ m.

We know every bounded sequence has a convergent subsequence and so {an} has a convergent
subsequence {ank

} → a. We claim {an} → a. Let ǫ > 0. Since {an} is Cauchy choose N1 so that if
n1, n2 ≥ N1 then |an1

−an2
| < ǫ

2
. Since {ank

} → a choose N2 so that if nk ≥ N2 then |ank
−a| < ǫ

2
.

Then if n, nk ≥ max{N1, N2} then

|an − a| = |(an − ank
) + (ank

− a)| ≤ |an − ank
|+ |ank

− a| < ǫ

(c) Theorem (The Cauchy Convergence Criterion for Series): The series
∑

∞

n=0
an converges

iff for all ǫ > 0 there is some N ∈ N such that for all n ≥ N and for all k ∈ N we have

|an+1 + ...+ an+k| < ǫ

Proof: By definition the series converges iff {sn} converges which occurs iff it is Cauchy. This is
true iff for all n1, n2 ≥ N we have |sn1

− sn2
| < ǫ. WLOG we can take n1 > n2 so let n = n2 and

n1 = n+ k and then we have

|sn1
− sn2

| < ǫ

|sn+k − sn| < ǫ

|(a1 + ...+ an + an+1 + ...+ an+k)− (a1 + ...+ an)| < ǫ

|an+1 + ...+ an+k| < ǫ


