Math 410 Section 9.1: Sequences and Series of Numbers

1. Introduction: The goal of this section is to formally define a series and what it means for a series to converge. In addition we will introduce the concept of a Cauchy sequence and look at news methods for showing that sequences and series converge.

2. Series

(a) Definition: Given a sequence $\left\{a_{n}\right\}$ we construct the series (infinite sum) represented by:

$$
\sum_{n=1}^{\infty} a_{n}
$$

(b) Convergence of Series Given a series as above we define the $n^{\text {th }}$ partial sum:

$$
s_{n}=\sum_{k=1}^{n} a_{n}=a_{1}+a_{2}+\ldots+a_{n}
$$

We then say that the series convergences when the sequence of partial sums

$$
\left\{s_{n}\right\}=\left\{\sum_{k=1}^{n} a_{n}\right\}
$$

converges. If it converges to some S then we say that the series converges to S and we write:

$$
\sum_{n=1}^{\infty} a_{n}=S
$$

Basically we are asking: As we add more and more terms does the resulting sum approach something?
(c) Example: Consider $\sum_{n=1}^{\infty}(1 / 2)^{n}$. For each k we have

$$
s_{k}=\frac{1}{2}+\frac{1}{4}+\frac{1}{8}+\ldots+\frac{1}{2^{k}}=1-\frac{1}{2^{k}}
$$

and since $\left\{s_{k}\right\} \rightarrow 1$ we have $\sum_{n=1}^{\infty}(1 / 2)^{n}=1$.
(d) Theorem: If $|r|<1$ then $\sum_{n=0}^{\infty} r^{n}=\frac{1}{1-r}$.

Proof: This is just like the $1 / 2$ case above but using the formula for a geometric sum to get an expression for the $n^{\text {th }}$ partial sum.
(e) Example: Consider $\sum_{n=1}^{\infty}(-1)^{n}$. Here we have $s_{k}=-1$ for k odd and $s_{k}=0$ for k even. Thus since $\left\{s_{k}\right\}$ diverges we say that $\sum_{n=1}^{\infty} 1$ diverges.
(f) Theorem: Suppose $\sum_{k=1}^{\infty} a_{n}=S$. Then $\left\{a_{n}\right\} \rightarrow 0$.

Proof: We know $\left\{s_{n}\right\} \rightarrow S$ but also $\left\{s_{n-1}\right\} \rightarrow S$. Then $\left\{a_{n}\right\}=\left\{s_{n}-s_{n-1}\right\} \rightarrow S-S=0$.

3. Cauchy Sequences

(a) Definition: A sequence $\left\{a_{n}\right\}$ is said to be Cauchy (or to be a Cauchy sequence) if for all $\epsilon>0$ there exists some N such that if $n_{1}, n_{2} \geq N$ then $\left|a_{n_{1}}-a_{n_{2}}\right|<\epsilon$.
Note: Intuitively a sequence is Cauchy if, given a closeness, we can give a cutoff after which all elements are within that closeness of one another. It's not usually much easier proving a sequence is Cauchy than proving it converges but it's a handy alternative which appears in theorems.
(b) Theorem (The Cauchy Convergence Criterion): A sequence converges iff it is Cauchy. Proof: Suppose that $\left\{a_{n}\right\} \rightarrow a$. Given $\epsilon>0$ choose N so that if $n \geq N$ then $\left|a_{n}-a\right|<\frac{\epsilon}{2}$. Then if $n_{1}, n_{2} \geq N$ then

$$
\left|a_{n_{1}}-a_{n_{2}}\right|=\left|\left(a_{n_{1}}-a_{n}\right)+\left(a_{n}-a_{n_{2}}\right)\right| \leq\left|a_{n_{1}}-a_{n}\right|+\left|a_{n}-a_{n_{2}}\right|<\epsilon
$$

Suppose that $\left\{a_{n}\right\}$ is Cauchy. First we'll show that $\left\{a_{n}\right\}$ is bounded. For $\epsilon=1$ choose N so that if $n_{1}, n_{2} \geq N$ we have $\left|a_{n_{1}}-a_{n_{2}}\right|<1$. Specifically then if $n \geq N$ we have $\left|a_{n}-a_{N}\right|<1$ and so $-1<a_{n}-a_{N}<1$ and so $a_{N}-1<a_{n}<a_{N}+1$. Consider $M=\max \left\{a_{1}, a_{2}, \ldots, a_{N-1}, a_{N}+1\right\}$. We see that for all n we have $a_{n} \leq M$. Likewise consider $m=\min \left\{a_{1}, a_{2}, \ldots, a_{N-1}, a_{N}-1\right\}$. We see that for all n we have $a_{n} \geq m$.
We know every bounded sequence has a convergent subsequence and so $\left\{a_{n}\right\}$ has a convergent subsequence $\left\{a_{n_{k}}\right\} \rightarrow a$. We claim $\left\{a_{n}\right\} \rightarrow a$. Let $\epsilon>0$. Since $\left\{a_{n}\right\}$ is Cauchy choose N_{1} so that if $n_{1}, n_{2} \geq N_{1}$ then $\left|a_{n_{1}}-a_{n_{2}}\right|<\frac{\epsilon}{2}$. Since $\left\{a_{n_{k}}\right\} \rightarrow a$ choose N_{2} so that if $n_{k} \geq N_{2}$ then $\left|a_{n_{k}}-a\right|<\frac{\epsilon}{2}$. Then if $n, n_{k} \geq \max \left\{N_{1}, N_{2}\right\}$ then

$$
\left|a_{n}-a\right|=\left|\left(a_{n}-a_{n_{k}}\right)+\left(a_{n_{k}}-a\right)\right| \leq\left|a_{n}-a_{n_{k}}\right|+\left|a_{n_{k}}-a\right|<\epsilon
$$

(c) Theorem (The Cauchy Convergence Criterion for Series): The series $\sum_{n=0}^{\infty} a_{n}$ converges iff for all $\epsilon>0$ there is some $N \in \mathbb{N}$ such that for all $n \geq N$ and for all $k \in \mathbb{N}$ we have

$$
\left|a_{n+1}+\ldots+a_{n+k}\right|<\epsilon
$$

Proof: By definition the series converges iff $\left\{s_{n}\right\}$ converges which occurs iff it is Cauchy. This is true iff for all $n_{1}, n_{2} \geq N$ we have $\left|s_{n_{1}}-s_{n_{2}}\right|<\epsilon$. WLOG we can take $n_{1}>n_{2}$ so let $n=n_{2}$ and $n_{1}=n+k$ and then we have

$$
\begin{aligned}
\left|s_{n_{1}}-s_{n_{2}}\right| & <\epsilon \\
\left|s_{n+k}-s_{n}\right| & <\epsilon \\
\left|\left(a_{1}+\ldots+a_{n}+a_{n+1}+\ldots+a_{n+k}\right)-\left(a_{1}+\ldots+a_{n}\right)\right| & <\epsilon \\
\left|a_{n+1}+\ldots+a_{n+k}\right| & <\epsilon
\end{aligned}
$$

