Math 410 Section 9.2: Pointwise Convergence of Functions

1. Introduction: The goal of this section is to introduce the first of two ways in which a sequence of functions can converge to a function and to see what sorts of properties, if any, are preserved.
2. Definition: We say that a sequence of functions $\left\{f_{n}: D \rightarrow \mathbb{R}\right\}$ and a function $f: D \rightarrow \mathbb{R}$ we say that $\left\{f_{n}\right\}$ converges pointwise to f and write if

$$
\left\{f_{n}\right\} \underset{p}{\rightarrow} f_{n} \text { if } \forall x \in D \text { we have }\left\{f_{n}(x)\right\} \rightarrow f(x)
$$

Note 1: This is nonstandard notation.
Note 2: It is critical to appreciate the fact that the $\forall x \in D$ comes before the $\left\{f_{n}(x)\right\} \rightarrow f(x)$. For any particular values of x the convergence is of a sequence and that convergence may be at different rates depending on the x. For example for one particular x_{1} the value of $f_{n}\left(x_{1}\right)$ might be close to $f\left(x_{1}\right)$ for low n but for another x_{2} it might take a very large n.
3. Example - Blah: Consider $f_{n}:[0,1] \rightarrow \mathbb{R}$ given by $f(x)=\frac{1}{n} x$. This is a line of slope $\frac{1}{n}$ joining $(0,0)$ to $\left(1, \frac{1}{n}\right)$.

Here we see intuitively that at each point x the function is approaching 0 . More rigorously for each fixed $x \in[0,1]$ we have

$$
\left\{f_{n}(x)\right\}=\left\{\frac{1}{n} x\right\} \rightarrow 0
$$

and so we write $\left\{f_{n}\right\} \underset{p}{\rightarrow} f$.
4. Example, Destroying Continuity: Consider $f_{n}:[0,1] \rightarrow \mathbb{R}$ given by $f(x)=x^{n}$. Here are the first few of these:

Intuitively it appears that for $x \in[0,1)$ we the y-values approach 0 but for $x=1$ the y-values stays at 1. In fact we can see this rigorously. For $x \in[0,1]$ we have

$$
\left\{f_{n}(x)\right\}=\left\{x^{n}\right\} \rightarrow 0
$$

and for $x-1$ we have

$$
\left\{f_{n}(x)\right\}=\{1\} \rightarrow 0
$$

It follows that $\left\{f_{n}\right\} \underset{p}{\rightarrow} f$ where:

$$
f(x)= \begin{cases}0 & \text { if } x \in[0,1) \\ 1 & \text { if } x=1\end{cases}
$$

This example is particularly interesting because each f_{n} is continuous on $[0,1]$ but f is not.
It follows that pointwise convergence does not preserve continuity.
5. Example - Destroying Differentiability: Consider $f_{n}:(0,1) \rightarrow \mathbb{R}$ given by $f(x)=x \tan ^{-1}(n x)$. Here are some of these:

It's not entirely clear what these are approaching so let's look at a specific x.

- Of course if $x=0$ then $\left\{x \tan ^{-1}(n x)\right\}=\{0\} \rightarrow 0$.

For other x since $\tan ^{-1}$ has horizontal asymptotes at $\pm \frac{\pi}{2}$ we have:

- If $x>0$ then: $\left\{x \tan ^{-1}(n x)\right\} \rightarrow x\left(\frac{\pi}{2}\right)$.
- If $x<0$ then: $\left\{x \tan ^{-1}(n x)\right\} \rightarrow-x\left(\frac{\pi}{2}\right)$.

So all together:

$$
\left\{x \tan ^{-1}(n x)\right\} \underset{p}{\rightarrow} f(x)=\frac{\pi}{2}|x|
$$

This example is interesting because each f_{n} is continuous and differentiable on $(-1,1)$ and while f is continuous on $(-1,1)$ it is not differentiable on $(-1,1)$.
It follows that pointwise convergence does not preserve differentiability (even when it preserves continuity).
6. Example - Destroying Integrability: Since the rationals in $[0,1]$ are countable we can list them all as $\left\{q_{1}, q_{2}, \ldots\right\}$. Define $f_{n}:[0,1] \rightarrow \mathbb{R}$ as:

$$
f_{n}(x)= \begin{cases}1 & \text { if } x \in\left\{q_{1}, \ldots, q_{n}\right\} \\ 0 & \text { otherwise }\end{cases}
$$

Since each f_{n} is a step function is it integrable. However $\left\{f_{n}\right\}_{p}^{\vec{p}} f$ where f is:

$$
f(x)= \begin{cases}1 & \text { if } x \in \mathbb{Q} \\ 0 & \text { otherwise }\end{cases}
$$

which we have seen is not integrable.
It follows that pointwise convergence does not preserve integrability.
7. Example - Preserving Integrability but Destroying the Integral: Consider $f_{n}:[0,1] \rightarrow \mathbb{R}$ defined by the following piecewise function:

This is a particularly sneaky example. First note that $f_{n}(0)=0$.
Now then for $x \in(0,1]$ as n increases the peak moves left and up but the point $\left(\frac{2}{n}, 0\right)$ (the right edge of the mountain) also moves left. As a result, for any x if we choose a high enough n such that $\frac{2}{n}<x$ then for that n and higher we have $f_{n}(x)=0$ (since the mountain has moved to the left of that x). Thus for all x we have $\left\{f_{n}(x)\right\} \rightarrow 0$ and so

$$
\left\{f_{n}\right\} \underset{p}{\rightarrow} f(x)=0
$$

This example is interesting because each f_{n} is integrable with $\int_{0}^{1} f_{n}=1$ (the area of the triangle) and f is also integrable but $\int_{0}^{1} f=0$.
It follows that pointwise convergence does not preserve the value of the integral even when it preserves integrability.

