1. Introduction: Our hope is that when $\left\{f_{n}\right\} \underset{u}{\vec{u}} f$ that some properties are also passed over. We will see that this is true to a degree.
2. Theorem (Continuity): Suppose that $\left\{f_{n}: D \rightarrow \mathbb{R}\right.$ are all continuous, $f: D \rightarrow \mathbb{R}$ and and $\left\{f_{n}\right\} \underset{u}{ } f$. Then $f$ is continuous.
Proof: Let $x_{0} \in D$ and suppose $\left\{x_{k}\right\} \rightarrow x_{0}$. We claim $\left\{f\left(x_{k}\right)\right\} \rightarrow f\left(x_{0}\right)$. Suppose we are given $\epsilon>0$.

- First since $\left\{f_{n}\right\} \underset{u}{\vec{u}} f$ we can choose a fixed $N$ so that $f_{N}$ is within $\frac{\epsilon}{3}$ of $f$ everywhere. Thus $f\left(x_{k}\right)$ is within $\frac{\epsilon}{3}$ of $f_{N}\left(x_{k}\right)$ and $f\left(x_{0}\right)$ is within $\frac{\epsilon}{3}$ of $f_{N}\left(x_{0}\right)$.
- Second since $f_{N}$ is continuous we can choose $K$ such that if $k \geq K$ then $\left|f_{N}\left(x_{k}\right)-f_{N}\left(x_{0}\right)\right|<\frac{\epsilon}{3}$.

Then for $k \geq K$ we have:

$$
\begin{aligned}
\left|f\left(x_{k}\right)-f\left(x_{0}\right)\right| & =\left|f\left(x_{k}\right)-f_{N}\left(x_{k}\right)+f_{N}\left(x_{k}\right)-f_{N}\left(x_{0}\right)+f_{N}\left(x_{0}\right)-f\left(x_{0}\right)\right| \\
& \leq\left|f\left(x_{k}\right)-f_{N}\left(x_{k}\right)\right|+\left|f_{N}\left(x_{k}\right)-f_{N}\left(x_{0}\right)\right|+\left|f_{N}\left(x_{0}\right)-f\left(x_{0}\right)\right| \\
& \leq \frac{\epsilon}{3}+\frac{\epsilon}{3}+\frac{\epsilon}{3}=\epsilon
\end{aligned}
$$

3. Theorem (Integrability): Suppose that $\left\{f_{n}:[a, b] \rightarrow \mathbb{R}\right.$ are all integrable, $f:[a, b] \rightarrow \mathbb{R}$ and and $\left\{f_{n}\right\} \underset{u}{\rightarrow} f$. Then $f$ is integrable and

$$
\left\{\int_{a}^{b} f_{n}\right\} \rightarrow \int_{a}^{b} f
$$

Proof: Given $\epsilon>0$ let $\epsilon^{\prime}=\frac{\epsilon}{2(b-a)}$ since $\left\{f_{n}\right\} \underset{u}{\rightarrow} f$ we can choose some $n \in \mathbb{N}$ so that $f_{n}(x)$ is within $\epsilon^{\prime}$ of $f(x)$ everywhere. That is, for all $x \in[a, b]$ we have:

$$
\begin{gathered}
\left|f(x)-f_{n}(x)\right|<\epsilon^{\prime} \\
-\epsilon^{\prime}<f(x)-f_{n}(x)<\epsilon^{\prime} \\
f_{n}(x)-\epsilon^{\prime}<f(x)<f_{n}(x)+\epsilon^{\prime}
\end{gathered}
$$

It follows by the monotonicity of the lower and upper integals (this follows from their definition) that:

$$
\overline{\int_{a}^{b}} f \leq \overline{\int_{a}^{b}}\left[f_{n}+\epsilon^{\prime}\right]=\int_{a}^{b}\left[f_{n}+\epsilon^{\prime}\right]=\left[\int_{a}^{b} f\right]+\epsilon^{\prime}(b-a)
$$

and

$$
\underline{\int_{a}^{b}} f \geq \underline{\int_{a}^{b}}\left[f_{n}-\epsilon^{\prime}\right]=\int_{a}^{b}\left[f_{n}-\epsilon^{\prime}\right]=\left[\int_{a}^{b} f\right]-\epsilon^{\prime}(b-a)
$$

Thus

$$
\overline{\int_{a}^{b}} f-\underline{\int_{a}^{b}} f \leq\left[\left[\int_{a}^{b} f\right]+\epsilon^{\prime}(b-a)\right]-\left[\left[\int_{a}^{b} f\right]-\epsilon^{\prime}(b-a)\right]=2 \epsilon^{\prime}(b-a)=\epsilon
$$

Since this holds for any $\epsilon>0$ we must have

$$
\overline{\int_{a}^{b}} f=\underline{\int_{a}^{b}} f
$$

and hence $f$ is integrable.
Next consider that for any $\epsilon>0$ let $\epsilon^{\prime}=\frac{\epsilon}{b-a}$ then since $\left\{f_{n}\right\} \underset{u}{\rightarrow} f$ we can choose some $n \in \mathbb{N}$ so that $f_{n}(x)$ is within $\epsilon^{\prime}$ of $f(x)$ everywhere. As before we have:

$$
\begin{gathered}
-\epsilon^{\prime}<f_{n}(x)-f(x)<\epsilon^{\prime} \\
\int_{a}^{b} \epsilon^{\prime}<\int_{a}^{b}\left[f_{n}-f\right]<\int_{a}^{b} \epsilon^{\prime} \\
-\epsilon^{\prime}(b-a)<\int_{a}^{b} f_{n}-\int_{a}^{b} f<\epsilon^{\prime}(b-a) \\
\left|\int_{a}^{b} f_{n}-\int_{a}^{b} f\right|<\epsilon^{\prime}(b-a) \\
\left|\int_{a}^{b} f_{n}-\int_{a}^{b} f\right|<\epsilon
\end{gathered}
$$

Since this holds for any $\epsilon$ we have

$$
\left\{\int_{a}^{b} f_{n}\right\} \rightarrow \int_{a}^{b} f
$$

4. Theorem (Differentiability): Let $I$ be an open interval in $\mathbb{R}$. Suppose that $\left\{f_{n}: I \rightarrow \mathbb{R}\right\}$ is such that:

- The $f_{n}$ are all differentiable with continuous derivatives.
- We have $\left\{f_{n}\right\} \underset{p}{\rightarrow} f$ for some $f: I \rightarrow \mathbb{R}$.
- We have $\left\{f_{n}^{\prime}\right\} \underset{u}{\rightarrow} g$ for some $g: I \rightarrow \mathbb{R}$.

Then $f$ is differentiable with a continuous derivative and for all $x \in I$ we have $f^{\prime}(x)=g(x)$
Note: The fact that it's not sufficient to have $\left\{f_{n}\right\} \rightarrow f$ with all the $f_{n}$ differentiable is pointed out by the example in Section 9.2 with $f_{n}(x)=x \tan ^{-1}(n x)$ on $(-1,1)$. This sequence does converge uniformly to $\frac{\pi}{2}|x|$ and yet differentiability is not carried over to $f$.
This example doesn't satisfy these hypotheses because even though the sequence of derivative functions converges to some $g$, that convergence is pointwise and not uniform. The easiest way to see this is to note that for $x>0$ since $\left\{f_{n}(x)\right\} \rightarrow \frac{\pi}{2} x$ we must have $\left\{f_{n}^{\prime}(x)\right\} \rightarrow \frac{\pi}{2}$ but no matter how large $n$ is there are always points close to $x=0$ with slope arbitrarily close to 0 and therefore far from $\frac{\pi}{2}$.
We can see this by examining the derivative:

$$
f_{n}(x)=\tan ^{-1}(n x)+\frac{n x}{1+n^{2} x^{2}}
$$

By making $x$ very small we can make both summands small.
Proof: Fix $x_{0} \in I$ and note that for each $x \in I$ by the First Fundamental Theorem of Calculus we have:

$$
f_{n}(x)-f_{n}\left(x_{0}\right)=\int_{x_{0}}^{x} f_{n}^{\prime}
$$

Now then since $\left\{f_{n}^{\prime}\right\} \underset{u}{\vec{u}} g$ we have:

$$
\left\{\int_{x_{0}}^{x} f_{n}^{\prime}\right\} \rightarrow \int_{x_{0}}^{x} g
$$

and since $\left\{f_{n}\right\} \underset{p}{\rightarrow} f$ we have:

$$
\left\{f_{n}(x)-f_{n}\left(x_{0}\right)\right\} \rightarrow f(x)-f\left(x_{0}\right)
$$

It follows therefore that:

$$
f\left(x_{0}\right)-f(x)=\int_{x_{0}}^{x} g
$$

Since these are identical if the right side is differentiable then so is the left side. And indeed since the $f_{n}^{\prime}$ are continuous and $\left\{f_{n}^{\prime}\right\} \underset{u}{\rightarrow} g$ we know that $g$ is continuous and so by the Second Fundamental Theorem of Calculus we have:

$$
\frac{d}{d x} \int_{x_{0}}^{x} g=g
$$

and so:

$$
\begin{aligned}
\frac{d}{d x}\left[f(x)-f\left(x_{0}\right)\right] & =g \\
f^{\prime}(x) & =g(x)
\end{aligned}
$$

Note that since $f^{\prime}=g$ and $g$ is continuous we know $f^{\prime}$ has continuous derivative and since $f$ is differentiable it must be continuous.

