Math 410 Section 9.5: Power Series

1. Introduction: We started this chapter by taking a function and creating the series of Taylor Polynomials
from the function. Now we will go the other way, we’ll start with a series which converges and use it to
define a function.

2. Theorem (Ratio Test): Consider the series:
o0
D an
n=0

Suppose that:

Then:

o If L < 1 then the series converges (absolutely).
e If L > 1 then the series diverges.

Proof: Omit.

3. Definition: Given a sequence {c,} we define the domain of convergence of the series:
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to be the set D of all z € R such that the series converges. Note that D is nonempty since 0 € D. Then
we can define f: D — R by:
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and we say that the series is a power series expansion of f(x).

Example: Consider the series:
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We define:
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It follows that the series converges (absolutely) when 2|z < 1 which is when |z| < 1.
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and observe that:
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4. Theorem:

Consider the power series:
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If r £ 0 is in the domain of convergence of the power series then so is the entire interval (—|r|, |r|).
In addition the power series converges uniformly on this interval.
Proof: Omit.

Meaning: For example if z = 5 is in the domain of convergence then the domain of convergence contains
all of (—5,5).

Corollary: The domain of convergence of a power series always has one of the forms {0}, (r,7), [r,7),
(r,7] or [r,r]. We can have r = oo in the parenthetical cases.

5. Theorem (Differentiation):

Consider the power series:
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Suppose (—r,r) is in the domain of convergence then the function f : (—r,7) — R defined by this power
series has derivatives of all order and the derivatives may be calculated on a term-by-term basis. In
other words:
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And in fact all of these derivatives also converge on (—r,r).
Proof: Omit.
Example: The earlier example yielded f : (—%, %) — R defined by:
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It follows that the function f is differentiable and
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Notice we need to be careful if we rewrite this as a sum because the 0" term vanishes as it’s constant.
The result is therefore:
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6. Differential Equations: Functions defined through power series can be useful when dealing with
differential equations. Custom-construction of power series to solve differential equations is beyond the
scope of the course but we can at the very least consider the following.

Example: Consider the power series:
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The Ratio Test shows that the power series converges for all z and so defines a function f: R — R. It
follows that:

It follows that this f(z) satisfies the differential equation:

f"(@) = f(x)

This is interesting because we are familiar with a function which equals its derivative (for example
y = %) and its second derivative (for example y = e~ %) and even its fourth derivative (for example
y =sinz and y = cos ) but not its third derivative.

Note: In this example f(0) = 1. Since any multiple of f also satisfies this differential equation we can
multiple by the power series by any ¢ to force f(0) = ¢. For example the function defined by the power
series:
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satisfies the same differential equation and has f(0) = 17.

Note: In this example f'(0) = 0. Changing this is tricker. One approach is to take a term-by-term
antiderivative of f which will then satisify the same differential equation and adjust it accordingly. For
example to get f(0) = 17 and f'(0) = 42 we could do:
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Observe that the way we have written this is not in a standard power-series way but it’s possible to
rewrite it.



