
Math 410 Section 9.5: Power Series

1. Introduction: We started this chapter by taking a function and creating the series of Taylor Polynomials
from the function. Now we will go the other way, we’ll start with a series which converges and use it to
define a function.

2. Theorem (Ratio Test): Consider the series:
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Then:

• If L < 1 then the series converges (absolutely).

• If L > 1 then the series diverges.

Proof: Omit.

3. Definition: Given a sequence {cn} we define the domain of convergence of the series:
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to be the set D of all x ∈ R such that the series converges. Note that D is nonempty since 0 ∈ D. Then
we can define f : D → R by:

f(x) =
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and we say that the series is a power series expansion of f(x).

Example: Consider the series:
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We define:
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and observe that:
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It follows that the series converges (absolutely) when 2|x| < 1 which is when |x| < 1
2 .



4. Theorem:

Consider the power series:
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If r 6= 0 is in the domain of convergence of the power series then so is the entire interval (−|r|, |r|).

In addition the power series converges uniformly on this interval.

Proof: Omit.

Meaning: For example if x = 5 is in the domain of convergence then the domain of convergence contains
all of (−5, 5).

Corollary: The domain of convergence of a power series always has one of the forms {0}, (r, r), [r, r),
(r, r] or [r, r]. We can have r = ∞ in the parenthetical cases.

5. Theorem (Differentiation):

Consider the power series:
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Suppose (−r, r) is in the domain of convergence then the function f : (−r, r) → R defined by this power
series has derivatives of all order and the derivatives may be calculated on a term-by-term basis. In
other words:
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And in fact all of these derivatives also converge on (−r, r).

Proof: Omit.

Example: The earlier example yielded f :
(
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→ R defined by:
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It follows that the function f is differentiable and

f ′(x) =
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Notice we need to be careful if we rewrite this as a sum because the 0th term vanishes as it’s constant.
The result is therefore:
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6. Differential Equations: Functions defined through power series can be useful when dealing with
differential equations. Custom-construction of power series to solve differential equations is beyond the
scope of the course but we can at the very least consider the following.

Example: Consider the power series:
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The Ratio Test shows that the power series converges for all x and so defines a function f : R → R. It
follows that:
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It follows that this f(x) satisfies the differential equation:

f ′′′(x) = f(x)

This is interesting because we are familiar with a function which equals its derivative (for example
y = ex) and its second derivative (for example y = e−x) and even its fourth derivative (for example
y = sinx and y = cosx) but not its third derivative.

Note: In this example f(0) = 1. Since any multiple of f also satisfies this differential equation we can
multiple by the power series by any c to force f(0) = c. For example the function defined by the power
series:
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satisfies the same differential equation and has f(0) = 17.

Note: In this example f ′(0) = 0. Changing this is tricker. One approach is to take a term-by-term
antiderivative of f which will then satisify the same differential equation and adjust it accordingly. For
example to get f(0) = 17 and f ′(0) = 42 we could do:
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Observe that the way we have written this is not in a standard power-series way but it’s possible to
rewrite it.


