Math 410 Section 9.5: Power Series

1. Introduction: We started this chapter by taking a function and creating the series of Taylor Polynomials from the function. Now we will go the other way, we'll start with a series which converges and use it to define a function.
2. Theorem (Ratio Test): Consider the series:

$$
\sum_{n=0}^{\infty} a_{n}
$$

Suppose that:

$$
\left\{\left|\frac{a_{n+1}}{a_{n}}\right|\right\} \rightarrow L
$$

Then:

- If $L<1$ then the series converges (absolutely).
- If $L>1$ then the series diverges.

Proof: Omit.
3. Definition: Given a sequence $\left\{c_{n}\right\}$ we define the domain of convergence of the series:

$$
\sum_{n=0}^{\infty} c_{n} x^{n}=c_{0}+c_{1} x+c_{2} x^{2}+\ldots
$$

to be the set D of all $x \in \mathbb{R}$ such that the series converges. Note that D is nonempty since $0 \in D$. Then we can define $f: D \rightarrow \mathbb{R}$ by:

$$
f(x)=\sum_{n=0}^{\infty} c_{n} x^{n}
$$

and we say that the series is a power series expansion of $f(x)$.
Example: Consider the series:

$$
\sum_{n=0}^{\infty} \frac{2^{n} x^{n}}{n+1}
$$

We define:

$$
a_{n}=\frac{2^{n} x^{n}}{n+1}
$$

and observe that:

$$
\left\{\left|\frac{a_{n+1}}{a_{n}}\right|\right\}=\left\{\left|\frac{2^{n+1} x^{n+1}}{(n+2)} \cdot \frac{n+1}{2^{n} x^{n}}\right|\right\}=\left\{2|x| \cdot \frac{n+1}{n+2}\right\} \rightarrow 2|x|
$$

It follows that the series converges (absolutely) when $2|x|<1$ which is when $|x|<\frac{1}{2}$.

4. Theorem:

Consider the power series:

$$
\sum_{n=0}^{\infty} c_{n} x^{n}
$$

If $r \neq 0$ is in the domain of convergence of the power series then so is the entire interval $(-|r|,|r|)$.
In addition the power series converges uniformly on this interval.
Proof: Omit.
Meaning: For example if $x=5$ is in the domain of convergence then the domain of convergence contains all of $(-5,5)$.
Corollary: The domain of convergence of a power series always has one of the forms $\{0\},(r, r),[r, r)$, $(r, r]$ or $[r, r]$. We can have $r=\infty$ in the parenthetical cases.

5. Theorem (Differentiation):

Consider the power series:

$$
\sum_{n=0}^{\infty} c_{n} x^{n}
$$

Suppose $(-r, r)$ is in the domain of convergence then the function $f:(-r, r) \rightarrow \mathbb{R}$ defined by this power series has derivatives of all order and the derivatives may be calculated on a term-by-term basis. In other words:

$$
\frac{d^{n}}{d x^{n}} \sum_{n=0}^{\infty} c_{n} x^{n}=\sum_{n=0}^{\infty} \frac{d^{n}}{d x^{n}}\left[c_{n} x^{n}\right]
$$

And in fact all of these derivatives also converge on $(-r, r)$.
Proof: Omit.
Example: The earlier example yielded $f:\left(-\frac{1}{2}, \frac{1}{2}\right) \rightarrow \mathbb{R}$ defined by:

$$
f(x)=\sum_{n=0}^{\infty} \frac{2^{n} x^{n}}{n!}
$$

It follows that the function f is differentiable and

$$
f^{\prime}(x)=\sum_{n=0}^{\infty} \frac{d}{d x}\left[\frac{2^{n} x^{n}}{n!}\right]
$$

Notice we need to be careful if we rewrite this as a sum because the $0^{\text {th }}$ term vanishes as it's constant. The result is therefore:

$$
f^{\prime}(x)=\sum_{n=0}^{\infty} \frac{d}{d x}\left[\frac{2^{n} x^{n}}{n!}\right]=\sum_{n=1}^{\infty} \frac{2^{n} n x^{n-1}}{n!}
$$

6. Differential Equations: Functions defined through power series can be useful when dealing with differential equations. Custom-construction of power series to solve differential equations is beyond the scope of the course but we can at the very least consider the following.
Example: Consider the power series:

$$
\sum_{n=0}^{\infty} \frac{x^{3 n}}{(3 n)!}=\frac{1}{(3(0))!}+\frac{x^{3(1)}}{(3(1))!}+\frac{x^{3(2)}}{(3(2))!}+\ldots=1+\frac{1}{6} x^{3}+\frac{1}{720} x^{6}+\ldots
$$

The Ratio Test shows that the power series converges for all x and so defines a function $f: \mathbb{R} \rightarrow \mathbb{R}$. It follows that:

$$
\begin{aligned}
f(x) & =\sum_{n=0}^{\infty} \frac{x^{3 n}}{(3 n)!} \\
f^{\prime}(x) & =\sum_{n=1}^{\infty} \frac{3 n x^{3 n-1}}{(3 n)!}=\sum_{n=1}^{\infty} \frac{x^{3 n-1}}{(3 n-1)!} \\
f^{\prime \prime}(x) & =\sum_{n=1}^{\infty} \frac{(3 n-1) x^{3 n-2}}{(3 n-1)!}=\sum_{n=1}^{\infty} \frac{x^{3 n-2}}{(3 n-2)!} \\
f^{\prime \prime \prime}(x) & =\sum_{n=1}^{\infty} \frac{(3 n-2) x^{3 n-3}}{(3 n-2)!}=\sum_{n=1}^{\infty} \frac{x^{3 n-3}}{(3 n-3)!}=\sum_{n=0}^{\infty} \frac{x^{3 n}}{(3 n)!}=f(x)
\end{aligned}
$$

It follows that this $f(x)$ satisfies the differential equation:

$$
f^{\prime \prime \prime}(x)=f(x)
$$

This is interesting because we are familiar with a function which equals its derivative (for example $y=e^{x}$) and its second derivative (for example $y=e^{-x}$) and even its fourth derivative (for example $y=\sin x$ and $y=\cos x$) but not its third derivative.
Note: In this example $f(0)=1$. Since any multiple of f also satisfies this differential equation we can multiple by the power series by any c to force $f(0)=c$. For example the function defined by the power series:

$$
f(x)=\sum_{n=0}^{\infty} \frac{17 x^{3 n}}{(3 n)!}
$$

satisfies the same differential equation and has $f(0)=17$.
Note: In this example $f^{\prime}(0)=0$. Changing this is tricker. One approach is to take a term-by-term antiderivative of f which will then satisify the same differential equation and adjust it accordingly. For example to get $f(0)=17$ and $f^{\prime}(0)=42$ we could do:

$$
f(x)=\sum_{n=0}^{\infty}\left[\frac{17 x^{3 n}}{(3 n)!}+\frac{42 x^{3 n+1}}{(3 n+1)!}\right]
$$

Observe that the way we have written this is not in a standard power-series way but it's possible to rewrite it.

