- 1. Give an example of a set A with $\mathbb{Q} \subset A \subset \mathbb{R}$. Solution: One example is something sneaky like $A = \mathbb{Q} \cup \{\sqrt{2}\}$.
- 2. Give an example of sets A and B with $A \subseteq B$ and $A \in B$. Solution: For example $A = \{1\}$ and $B = \{1, \{1\}\}$.
- 3. If $A = \{1, 2, 3, 4, 5\}$ and $B = \{3, 4, 5, 6, 7\}$:
 - (a) Find $A \cap B$. Solution: $A \cap B = \{3, 4, 5\}$
 - (b) Find A ∪ B.
 Solution: A ∪ B = {1, 2, 3, 4, 5, 6, 7}
 - (c) Find an expression involving A, B and some of ∩, ∪, − and complement to denote the elements in either A or B but not both.
 Solution: One way is (A ∪ B) − (A ∩ B). Another way is (A ∩ B) ∪ (A ∪ B).
- 4. Give examples of sets of integers A and B with $A \cap B = \{1, 2\}$ and $|\mathbb{Z} (A \cup B)| = 1$. Solution: For example we could have $A = \{1, 2, 3, 4, ...\}$ and $B = \{1, 2, -1, -2, -3, -4, ...\}$.
- 5. Find $\mathcal{P}(A)$ for $A = \{1, 2, 3\}$. Solution: We have $\mathcal{P}(A) = \{\{\}, \{1\}, \{2\}, \{3\}, \{1, 2\}, \{1, 3\}, \{2, 3\}, \{1, 2, 3\}\}$
- 6. Find $\mathcal{P}(A)$ for $A = \{0, \{0, 1\}\}.$ Solution: We have $\mathcal{P}(A) = \{\{\}, \{0\}, \{\{0, 1\}\}, \{0, \{0, 1\}\}\}$