1. Find a collection of open intervals $S_n = (?,?)$ enumerated by the natural numbers with

$$\underset{n\in\mathbb{N}}{\cap}S_n=[-1,1]$$

- 2. SKIP.
- 3. Which of the following sentences are statements? For those that are, indicate the truth value.
 - (a) The number 16 is prime.
 - (b) Is it true that $3 \cdot 4 = 12$?
 - (c) $3 \cdot 4 = 12$.
 - (d) $\emptyset \in \emptyset$
 - (e) $\emptyset \subseteq \emptyset$
 - (f) $\emptyset \in \{\emptyset\}$
 - (g) $\emptyset \subseteq \{\emptyset\}$
- 4. Suppose p(x) is the open sentence $2x^2 + 5x 3 = 0$.
 - (a) Over the domain \mathbb{R} for which $x \in \mathbb{R}$ is this statement true? For which is it false? Write these in set notation.
 - (b) Over the domain \mathbb{Z} for which $x \in \mathbb{Z}$ is this statement true? For which is it false? Write these in set notation.
- 5. Suppose p(A) is the open sentence $A \nsubseteq \{1,2\}$. For which $A \in \mathcal{P}(\{1,2,3\})$ is this statement true? Write this in set notation.
- 6. Sketch the subset of $\mathbb{Z} \times \mathbb{Z}$ given by $\{(x,y) \mid x,y \in \mathbb{Z} \times \mathbb{Z} \text{ and } 2x y \leq 1\}$