1. Find a collection of open intervals $S_n = (?, ?)$ enumerated by the natural numbers with

$$\underset{n \in \mathbb{N}}{\cap} S_n = [-1, 1]$$

Solution: We may use $S_n = (-1 - \frac{1}{n}, 1 + \frac{1}{n}).$

- 2. Skip.
- 3. Which of the following sentences are statements? For those that are, indicate the truth value.
 - (a) The number 16 is prime. Solution: False.
 - (b) Is it true that $3 \cdot 4 = 12$? Solution: Not a statement.
 - (c) $3 \cdot 4 = 12$. Solution: True.
 - (d) Ø ∈ Ø
 Solution: False.
 (e) Ø ⊆ Ø
 - (e) $\emptyset \subseteq \emptyset$ Solution: True. (f) $\emptyset \in \{\emptyset\}$

Solution: True.

(g)
$$\emptyset \subseteq \{\emptyset\}$$

Solution: True.

- 4. Suppose p(x) is the open sentence $2x^2 + 5x 3 = 0$.
 - (a) Over the domain \mathbb{R} for which $x \in \mathbb{R}$ is this statement true? For which is it false? Write these in set notation.

Solution: This sentence is true for $\{\frac{1}{2}, -3\}$ and false for $\{x \in \mathbb{R} \mid x \neq \frac{1}{2} \text{ and } x \neq -3\}$.

(b) Over the domain Z for which x ∈ Z is this statement true? For which is it false? Write these in set notation.

Solution: This sentence is true for $\{-3\}$ and false for $\{x \in \mathbb{Z} \mid x \neq -3\}$.

5. Suppose p(A) is the open sentence $A \not\subseteq \{1, 2\}$. For which $A \in \mathcal{P}(\{1, 2, 3\})$ is this statement true? Write this in set notation.

Solution: This is true for the set $\{\{3\}, \{1,3\}, \{2,3\}, \{1,2,3\}\}$.

6. Sketch the subset of $\mathbb{Z} \times \mathbb{Z}$ given by $\{(x, y) \mid x, y \in \mathbb{Z} \times \mathbb{Z} \text{ and } 2x - y \leq 1\}$ Solution:

