- 1. Negate the following statements:
 - (a) The number $\sqrt{57}$ is prime. Negation:
 - (b) $x \in A$ and $y \in B$. Negation:
 - (c) $x \in A$ or $y \notin B$. Negation:
- 2. For the sets $A = \{1, 2\}$ and $B = \{1, 2, 3\}$ consider the statements

 $P: A \subseteq B$ and $Q: |A \cap B| = 3$

Determine if each of the following is true or false:

Statement	T or F
Р	
Q	
$P \lor Q$	
$P \wedge Q$	
$\sim ((\sim P) \lor Q)$	
$P \to Q$	
$Q \to P$	
$P \leftrightarrow Q$	

3. Let $S = \{1, 2, 3, 4, 5, 6\}$ and consider the open sentences

$$P(A): A \cap \{2, 4, 6\} = \emptyset$$
 and $Q(A): A \neq \emptyset$

over the domain $\mathcal{P}(S)$. Determine all $A \in \mathcal{P}(S)$ for which $P(A) \wedge Q(A)$ is true. **Hint:** What exactly does it mean to have some $A \in \mathcal{P}(S)$ with $P(A) \wedge Q(A)$ being true?

- 4. Suppose $P(x): x \in [-1, 2]$ and $Q(x): x^2 \leq 2$ over the domain S = [-2, 2].
 - (a) For which values in the domain is the conditional $P(x) \to Q(x)$ a true statement?
 - (b) For which values in the domain is the conditional $Q(x) \rightarrow P(x)$ a true statement?
 - (c) For which values in the domain is the biconditional $P(x) \leftrightarrow Q(x)$ a true statement?