1. Negate the following statements:

(a) The number $\sqrt{57}$ is prime.

Negation: The number $\sqrt{57}$ is not prime.

(b) $x \in A$ and $y \in B$.

Negation: Either $x \notin A$ or $y \notin B$.

(c) $x \in A$ or $y \notin B$.

Negation: Both $x \notin A$ and $y \in B$.

2. For the sets $A = \{1, 2\}$ and $B = \{1, 2, 3\}$ consider the statements

$$P:A\subseteq B$$
 and $Q:|A\cap B|=3$

Determine if each of the following is true or false:

Statement	T or F
P	Т
Q	F
$P \lor Q$	Τ
$P \wedge Q$	F
$\sim ((\sim P) \vee Q)$	Τ
$P \rightarrow Q$	F
$Q \rightarrow P$	Τ
$P \leftrightarrow Q$	F

3. Let $S = \{1, 2, 3, 4, 5, 6\}$ and consider the open sentences

$$P(A):A\cap\{2,4,6\}=\emptyset$$
 and $Q(A):A\neq\emptyset$

over the domain $\mathcal{P}(S)$. Determine all $A \in \mathcal{P}(S)$ for which $P(A) \wedge Q(A)$ is true.

Hint: What exactly does it mean to have some $A \in \mathcal{P}(S)$ with $P(A) \wedge Q(A)$ being true? **Answer to hint:** It means A contains none of 2, 4, 6 but is not empty.

Thus the solution is $\{\{1\}, \{3\}, \{5\}, \{1,3\}, \{1,5\}, \{3,5\}, \{1,3,5\}\}.$

Thus the solution is {{1}, {3}, {5}, {1,3}, {1,5}, {3,5}, {1,5,5}}.

- 4. Suppose $P(x): x \in [-1,2]$ and $Q(x): x^2 \le 2$ over the domain S = [-2,2].
 - (a) For which values in the domain is the conditional $P(x) \to Q(x)$ a true statement? We need $(\sim P(x)) \lor Q(x)$ which is $x \in [-2, -1)$ or $x \in [-\sqrt{2}, \sqrt{2}]$ so the answer is $[-2, 1) \cup [-\sqrt{2}, \sqrt{2}] = [-2, \sqrt{2}]$.
 - (b) For which values in the domain is the conditional $Q(x) \to P(x)$ a true statement? We need $(\sim Q(x)) \lor P(x)$ which is $x \in [-2, -\sqrt{2}) \cup (\sqrt{2}, 2]$ or $x \in [-1, 2]$ so the answer is $([-2, -\sqrt{2}) \cup (\sqrt{2}, 2]) \cup [-1, 2] = [-2, -\sqrt{2}) \cup [-1, 2]$.
 - (c) For which values in the domain is the biconditional $P(x) \leftrightarrow Q(x)$ a true statement? We need either $P(x) \land Q(x)$ or $(\sim P(x)) \land (\sim Q(x))$. The former occurs in the intersection of the answers to (a) and (b) which is $[-2, -\sqrt{2}) \cup [-1, \sqrt{2})$

The latter occurs in the intersection of the complements of the answers to (a) and (b) which is the intersection of $(\sqrt{2}, 2]$ and $[-\sqrt{2}, -1)$ which is \emptyset .