- 1. Suppose $P(x): x \in [-1,2]$ and $Q(x): x^2 \le 2$ over the domain S = [-2,2].
- 2. For which values in the domain is the biconditional $P(x) \leftrightarrow Q(x)$ a true statement? **Note:** This is the final question from yesterday's groupwork.
- 3. Suppose $P(x,y): x^2 y^2 = 0$ and Q(x,y): x = y. Determine the truth value of $P(x,y) \leftrightarrow Q(x,y)$ for $(x,y) \in \{(1,-1),(3,4),(5,5)\}.$
- 4. For statements P and Q show that $(P \land (P \rightarrow Q)) \rightarrow Q)$ is a tautology by writing out the truth table

P	Q	$P \rightarrow Q$	$(P \wedge (P \to Q))$	$(P \land (P \to Q)) \to Q)$
Т	Т			
T	F			
F	F			
F	Т			

5. Show that $P \to (Q \lor R) \equiv (\sim Q) \to ((\sim P) \lor R)$ by logically manipulating both sides to achieve the same statement.

6. Determine with justification if the following are true or false:

(a)
$$\forall n \in \mathbb{Z}, (2n-1)/5 \in \mathbb{Z}.$$

(b)
$$\exists n \in \mathbb{Z}, (2n-1)/5 \in \mathbb{Z}.$$

(c)
$$\exists x \in \mathbb{Z}, \exists y \in \mathbb{R}, x^2 + y^2 = 3$$

(d)
$$\sim (\exists s \in \{3, 5, 11\}, \exists t \in \{3, 5, 11\}, st - 2 \text{ is not prime})$$