- 1. Distribute the negation signs for each of the following, adjusting other symbols accordingly.
 - (a) $\sim (\forall x, P(x)) \equiv$
 - (b) $\sim (\exists x, Q(x)) \equiv$
 - (c) $\sim (\forall x, \exists y, P(x, y) \lor Q(x, y)) \equiv$
 - (d) $\sim (\exists x, \forall y, P(x, y) \land Q(x, y)) \equiv$
 - (e) $\sim (\exists x, \forall y, P(x, y) \rightarrow Q(x, y)) \equiv$
- 2. Negate the following sentences, writing the results in full sentences with as few symbols as the original.
 - (a) There is an $x \in \mathbb{R}$ so that for all $y \in \mathbb{Z}$ we have $x = y^2$ **Result:**
 - (b) For every year there is at least one day when it's sunny. **Result:**
 - (c) For every week there is at least one day where it rains or snows. **Result:**
- 3. Each of the following is either trivially or vacuously true or both. Determine which and explain why.
 - (a) Let $x \in \mathbb{R}$. Prove if $x^2 x + 10 = 0$ then $x^3 7 = 0$. Result:
 - (b) Let $x \in \mathbb{R}$. Prove if -|x+1| > 3 then $x^2 \ge 0$. Result:
 - (c) Let $n \in \mathbb{Z}$. Prove if $n^2 > 5$ then $|n+1| \ge 0$. Result:
- 4. Provide direct proofs of each of the following:
 - (a) If $x \in \mathbb{R}$ and $x^2 + x 12 = 0$ then x = 3 or x = -4. **Proof:**
 - (b) If $n \in \mathbb{Z}$ is even then 3n 5 is odd. **Proof:**
 - (c) If $n, m \in \mathbb{Z}$ are odd then $mn^2 n + m$ is odd. **Proof:**